skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Work in Progress: A Web-Based Tool to Assess Computational Thinking
When President Obama unveiled his plan to give all students in America the opportunity to learn computer science [1], discussions about computational thinking (CT) began in earnest in many organizations across a wide range of disciplines. However, Jeannette Wing stated the importance of CT for everyone a decade earlier in her landmark essay [2]. In recent years, several people and organizations have posted their own definition of CT, which presents a challenge in being able to assess CT understanding and awareness in people. In an effort to build consensus on how to best assess CT, the authors are developing a web-based tool that will enable CT experts globally to populate, review and rate questions that address various attributes of CT. Teaching Engineering Concepts to Harness Future Innovators and Technologists (TECHFIT) is an NSF-funded project that is examining the impact of the TECHFIT intervention based on the educational program’s delivery context. The CT Assessment System is being developed for TECHFIT as a standard way for teacher participants to gauge CT understanding in their students. It has been designed as a functional, web-based tool that supports management of the CT assessment questions database and giving different levels of access to various stakeholders, including the TECHFIT project team and academicians all over the world. The CT Assessment System includes features to enable authorized users to review, insert, and update a variety of questions in different formats. The level of access to this system is determined by the roles/permissions granted by the administrator. It also enables users to have the ability to rate the questions. The ratings are then aggregated to yield an overall rating value. The CT Assessment system has the capability to provide a clean, authentic and acceptable way to assess CT abilities via a common platform across the world. Attendees of the paper presentation will be invited to sign up and explore this tool to provide feedback for improvement of the tool.  more » « less
Award ID(s):
1640178
PAR ID:
10112289
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 ASEE Annual Conference & Exposition
Page Range / eLocation ID:
10 pages
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This research paper presents a literature review of Computational Thinking (CT) frameworks and assessment practices. CT is a 21st century way of solving a problem. It refers specifically to the methods that are effective when trying to solve a problem with a machine or other computational tools. In the past few years, CT researchers and educationists' significant movement started to look for a formal definition and composition of CT in K-12 and higher education. From this effort, over 20 different definitions and frameworks for CT have emerged. Although the availability of literature on CT has been increasing over the last decade, there is limited research synthesis available on how to assess CT better. Besides, it is known that in higher education designing assessments for CT is challenging and one of the primary reasons is that the precise meaning of CT is still unknown. This research paper, therefore, presents a systematized literature review on CT frameworks and assessment practice. We search three different databases and review 19 journal articles that address the assessment of CT in higher education to answer the following two research questions: 1) What does the literature inform us about practices and types of assessments used to evaluate CT in higher education? 2) Which frameworks of CT are present in literature to support CT assessment in higher education? The critical components of this review focus on frameworks and assessment practices based on CT. We develop a synthesis of suggestions and explanations to answer the proposed questions based on literature from recent research in CT. Based on our initial synthesis, we found a disconnect between theory and practice. Specifically, neither the ideas within CT frameworks nor those from CT assessment research are being utilized by the other. Therefore, there is a dire need to connect the two for practical implementation and further research in CT in higher education. 
    more » « less
  2. In recent years, the emergence of fake news outlets has drawn out the importance of news literacy. This is particularly critical in social media where the flood of information makes it difficult for people to assess the veracity of the false stories from such deceitful sources. Therefore, people oftentimes fail to look skeptically at these stories. We explore a way to circumvent this problem by nudging users into making conscious assessments of what online contents are credible. For this purpose, we developed FeedReflect, a browser extension. The extension nudges users to pay more attention and uses reflective questions to engage in news credibility assessment on Twitter. We recruited a small number of university students to use this tool on Twitter. Both qualitative and quantitative analysis of the study suggests the extension helped people accurately assess the credibility of news. This implies FeedReflect can be used for the broader audience to improve online news literacy. 
    more » « less
  3. Several consensus reports cite a critical need to dramatically increase the number and diversity of STEM graduates over the next decade. They conclude that a change to evidence-based instructional practices, such as concept-based active learning, is needed. Concept-based active learning involves the use of activity-based pedagogies whose primary objectives are to make students value deep conceptual understanding (instead of only factual knowledge) and then to facilitate their development of that understanding. Concept-based active learning has been shown to increase academic engagement and student achievement, to significantly improve student retention in academic programs, and to reduce the performance gap of underrepresented students. Fostering students' mastery of fundamental concepts is central to real world problem solving, including several elements of engineering practice. Unfortunately, simply proving that these instructional practices are more effective than traditional methods for promoting student learning, for increasing retention in academic programs, and for improving ability in professional practice is not enough to ensure widespread pedagogical change. In fact, the biggest challenge to improving STEM education is not the need to develop more effective instructional practices, but to find ways to get faculty to adopt the evidence-based pedagogies that already exist. In this project we seek to propagate the Concept Warehouse, a technological innovation designed to foster concept-based active learning, into Mechanical Engineering (ME) and to study student learning with this tool in five diverse institutional settings. The Concept Warehouse (CW) is a web-based instructional tool that we developed for Chemical Engineering (ChE) faculty. It houses over 3,500 ConcepTests, which are short questions that can rapidly be deployed to engage students in concept-oriented thinking and/or to assess students’ conceptual knowledge, along with more extensive concept-based active learning tools. The CW has grown rapidly during this project and now has over 1,600 faculty accounts and over 37,000 student users. New ConcepTests were created during the current reporting period; the current numbers of questions for Statics, Dynamics, and Mechanics of Materials are 342, 410, and 41, respectively. A detailed review process is in progress, and will continue through the no-cost extension year, to refine question clarity and to identify types of new questions to fill gaps in content coverage. There have been 497 new faculty accounts created after June 30, 2018, and 3,035 unique students have answered these mechanics questions in the CW. We continue to analyze instructor interviews, focusing on 11 cases, all of whom participated in the CW Community of Practice (CoP). For six participants, we were able to compare use of the CW both before and after participating in professional development activities (workshops and/or a community or practice). Interview results have been coded and are currently being analyzed. To examine student learning, we recruited faculty to participate in deploying four common questions in both statics and dynamics. In statics, each instructor agreed to deploy the same four questions (one each for Rigid Body Equilibrium, Trusses, Frames, and Friction) among their overall deployments of the CW. In addition to answering the question, students were also asked to provide a written explanation to explain their reasoning, to rate the confidence of their answers, and to rate the degree to which the questions were clear and promoted deep thinking. The analysis to date has resulted in a Work-In-Progress paper presented at ASEE 2022, reporting a cross-case comparison of two instructors and a Work-In-Progress paper to be presented at ASEE 2023 analyzing students’ metacognitive reflections of concept questions. 
    more » « less
  4. Computational thinking is identified as one of the “essential skills for 21st-Century students.” [1] Studies of CT in school programs are being funded by many organizations, including the United States National Science Foundation. In this paper, we describe “lessons learned” over the first two years of a research program (PREDICTS: Principles and Resources for Educators to Infuse Computational Thinking in the Sciences) with the goal of developing knowledge of how to integrate CT into introductory high school biology and chemistry classes for all students. Using curricular modules developed by program staff, two in biology and two in chemistry, teachers piloting the program engaged students in CT with computational evidence from authentic tools in order to develop understanding of science concepts. Each module, representing about a week of instruction, addresses science ideas in the prescribed course of study for high school programs. Project researchers have collected survey data on teachers’: (1) beliefs about effective science teaching; (2) beliefs about their effectiveness as a science teacher and their students’ ability to learn science, and; (3) content preparedness. In addition, we observed module implementation, collected and analyzed student artifacts, and interviewed teachers at the conclusion of module implementation. Preliminary results indicated some challenges (access to technology, varying levels of experience among students) and cause for optimism (student and teacher engagement in CT and the computational tools used in the modules). Continuing research efforts are described in this paper, along with descriptions of the curricular modules and the use of observations and “CT check-ins” to assess student engagement in, application of, and learning of CT. 
    more » « less
  5. Tools that enable end-users to customize websites typically use a two-stage workflow: first, users extract data into a structured form; second, they use that extracted data to augment the original website in some way. This two-stage workflow poses a usability barrier because it requires users to make upfront decisions about what data to extract, rather than allowing them to incrementally extract data as they augment it. In this paper, we present a new, unified interaction model for web customization that encompasses both extraction and augmentation. The key idea is to provide users with a spreadsheet-like formula language that can be used for both data extraction and augmentation. We also provide a programming-by-demonstration (PBD) interface that allows users to create data extraction formulas by clicking on elements in the website. This model allows users to naturally and iteratively move between extraction and augmentation. To illustrate our unified interaction model, we have implemented a tool called Joker which is an extension of Wildcard, a prior web customization system. Through case studies, we show that Joker can be used to customize many real-world websites. We also present a formative user study with five participants, which showed that people with a wide range of technical backgrounds can use Joker to customize websites, and also revealed some interesting limitations of our approach. 
    more » « less