skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1640178

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Teaching Engineering Concepts to Harness Future Innovators and Technologists (TECHFIT) was an NSF-funded science, technology, engineering, and math (STEM) project (DRL-1312215) (Harriger B. , Harriger, Flynn, & Flynn, 2013) that included a professional development (PD) program for teachers and an afterschool program for students. Curriculum and Assessment Design to Study the Development of Motivation and Computational Thinking for Middle School Students across Three Learning Contexts is an NSF-funded research project (DRL-1640178) (Harriger A. , Harriger, Parker, & Li, 2016) that examines the impact of delivering the TECHFIT curriculum to middle school students in three different contexts: afterschool program, in-school class, core class module. Thus far, the new project has deployed TECHFIT using the first two contexts, both of which use the entire TECHFIT curriculum. The goal of the TECHFIT curriculum is to spark interest in STEM and computational thinking (CT) in middle school students. The curriculum employs two computer programming tools as well as physical computing to introduce participants to STEM and CT. It also includes use of brain blasts to engage participants in a wide variety of physical activity throughout the instruction as well as to enrich their imaginations with different ways to make movement fun. This paper focuses on the process of exergame development using TECHFIT tools as a way to support CT skills development. The process is illustrated using a complete example from inception to a picture of teachers testing the working, physical exergame. 
    more » « less
  2. With the increase in popularity of operating systems like macOS and Chrome OS, creating non-mobile applications that run cross-platform is becoming a challenge for developers all over the world [1]. It is costly to create non-Windows versions of applications since the Operating Systems (OS) differ in architecture and implementation. Many creators from various organizations choose different routes for increasing application compatibility but are not always willing to pay the overhead of developing the same application on another platform. As a result, consumers are stuck with not being able to use the software they need and end up resorting to workarounds ranging from running virtual machines to parallel booting the operating system. Wine is a compatibility layer capable of running Windows applications on several POSIX-compliant operating systems, such as Linux, macOS, & BSD free of cost [2]. It is an excellent way to run Windows applications on macOS and other Linux machines without installing a resource intensive virtual machine or restarting the machine to dual boot. Wine has been in active use since 1993. Since then, it has been adopted by many large companies and integrated into their products, including Borland, Google, IBM and Oracle [3]. This paper describes how a National Science Foundation (NSF) funded project experienced a need to be able to run a Windows-only program on Macs or Chromebooks and explains how Wine may be used to overcome a similar OS-limiting challenge. 
    more » « less
  3. When President Obama unveiled his plan to give all students in America the opportunity to learn computer science [1], discussions about computational thinking (CT) began in earnest in many organizations across a wide range of disciplines. However, Jeannette Wing stated the importance of CT for everyone a decade earlier in her landmark essay [2]. In recent years, several people and organizations have posted their own definition of CT, which presents a challenge in being able to assess CT understanding and awareness in people. In an effort to build consensus on how to best assess CT, the authors are developing a web-based tool that will enable CT experts globally to populate, review and rate questions that address various attributes of CT. Teaching Engineering Concepts to Harness Future Innovators and Technologists (TECHFIT) is an NSF-funded project that is examining the impact of the TECHFIT intervention based on the educational program’s delivery context. The CT Assessment System is being developed for TECHFIT as a standard way for teacher participants to gauge CT understanding in their students. It has been designed as a functional, web-based tool that supports management of the CT assessment questions database and giving different levels of access to various stakeholders, including the TECHFIT project team and academicians all over the world. The CT Assessment System includes features to enable authorized users to review, insert, and update a variety of questions in different formats. The level of access to this system is determined by the roles/permissions granted by the administrator. It also enables users to have the ability to rate the questions. The ratings are then aggregated to yield an overall rating value. The CT Assessment system has the capability to provide a clean, authentic and acceptable way to assess CT abilities via a common platform across the world. Attendees of the paper presentation will be invited to sign up and explore this tool to provide feedback for improvement of the tool. 
    more » « less