skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NeuralHMC: an efficient HMC-based accelerator for deep neural networks
In Deep Neural Network (DNN) applications, energy consumption and performance cost of moving data between memory hierarchy and computational units are significantly higher than that of the computation itself. Process-in-memory (PIM) architecture such as Hybrid Memory Cube (HMC), becomes an excellent candidate to improve the data locality for efficient DNN execution. However, it’s still hard to efficiently deploy large-scale matrix computation in DNN on HMC because of its coarse grained packet protocol. In this work, we propose NeuralHMC, the first HMC-based accelerator tailored for efficient DNN execution. Experimental results show that NeuralHMC reduces the data movement by 1.4x to 2.5x (depending on the DNN data reuse strategy) compared to Von Neumann architecture. Furthermore, compared to state-of-the-art PIM-based DNN accelerator, NeuralHMC can promisingly improve the system performance by 4.1x and reduces energy by 1.5x, on average.  more » « less
Award ID(s):
1725456
PAR ID:
10112328
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Asia and South Pacific Design Automation Conference
Page Range / eLocation ID:
394 to 399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stochastic computing (SC) reduces the complexity of computation by representing numbers with long streams of independent bits. However, increasing performance in SC comes with either an increase in area or a loss in accuracy. Processing in memory (PIM) computes data in-place while having high memory density and supporting bit-parallel operations with low energy consumption. In this article, we propose COSMO, an architecture for co mputing with s tochastic numbers in me mo ry, which enables SC in memory. The proposed architecture is general and can be used for a wide range of applications. It is a highly dense and parallel architecture that supports most SC encodings and operations in memory. It maximizes the performance and energy efficiency of SC by introducing several innovations: (i) in-memory parallel stochastic number generation, (ii) efficient implication-based logic in memory, (iii) novel memory bit line segmenting, (iv) a new memory-compatible SC addition operation, and (v) enabling flexible block allocation. To show the generality and efficiency of our stochastic architecture, we implement image processing, deep neural networks (DNNs), and hyperdimensional (HD) computing on the proposed hardware. Our evaluations show that running DNN inference on COSMO is 141× faster and 80× more energy efficient as compared to GPU. 
    more » « less
  2. Latest algorithmic development has brought competitive classification accuracy for neural networks despite constraining the network parameters to ternary or binary representations. These findings show significant optimization opportunities to replace computationally-intensive convolution operations (based on multiplication) with more efficient and less complex operations such as addition. In hardware implementation domain, processing-in-memory architecture is becoming a promising solution to alleviate enormous energy-hungry data communication between memory and processing units, bringing considerable improvement for system performance and energy efficiency while running such large networks. In this paper, we review several of our recent works regarding Processing-in-Memory (PIM) accelerator based on Magnetic Random Access Memory computational sub-arrays to accelerate the inference mode of quantized neural networks using digital non-volatile memory rather than using analog crossbar operation. In this way, we investigate the performance of two distinct in-memory addition schemes compared to other digital methods based on processing-in-DRAM/GPU/ASIC design to tackle DNN power and memory wall bottleneck. 
    more » « less
  3. In this paper, an energy-efficient and high-speed comparator-based processing-in-memory accelerator (CMP-PIM) is proposed to efficiently execute a novel hardware-oriented comparator-based deep neural network called CMPNET. Inspired by local binary pattern feature extraction method combined with depthwise separable convolution, we first modify the existing Convolutional Neural Network (CNN) algorithm by replacing the computationally-intensive multiplications in convolution layers with more efficient and less complex comparison and addition. Then, we propose a CMP-PIM that employs parallel computational memory sub-array as a fundamental processing unit based on SOT-MRAM. We compare CMP-PIM accelerator performance on different data-sets with recent CNN accelerator designs. With the close inference accuracy on SVHN data-set, CMP-PIM can get ∼ 94× and 3× better energy efficiency compared to CNN and Local Binary CNN (LBCNN), respectively. Besides, it achieves 4.3× speed-up compared to CNN-baseline with identical network configuration. 
    more » « less
  4. Graph Neural Networks (GNNs) have achieved remarkable accuracy in cognitive tasks such as predictive analytics on graph-structured data. Hence, they have become very popular in diverse real-world applications. However, GNN training with large real-world graph datasets in edge-computing scenarios is both memory- and compute-intensive. Traditional computing platforms such as CPUs and GPUs do not provide the energy efficiency and low latency required in edge intelligence applications due to their limited memory bandwidth. Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures have been proposed as suitable candidates for accelerating AI applications at the edge, including GNN training. However, ReRAM-based PIM architectures suffer from low reliability due to their limited endurance, and low performance when they are used for GNN training in real-world scenarios with large graphs. In this work, we propose a learning-for-data-pruning framework, which leverages a trained Binary Graph Classifier (BGC) to reduce the size of the input data graph by pruning subgraphs early in the training process to accelerate the GNN training process on ReRAM-based architectures. The proposed light-weight BGC model reduces the amount of redundant information in input graph(s) to speed up the overall training process, improves the reliability of the ReRAM-based PIM accelerator, and reduces the overall training cost. This enables fast, energy-efficient, and reliable GNN training on ReRAM-based architectures. Our experimental results demonstrate that using this learning for data pruning framework, we can accelerate GNN training and improve the reliability of ReRAM-based PIM architectures by up to 1.6×, and reduce the overall training cost by 100× compared to state-of-the-art data pruning techniques. 
    more » « less
  5. Nowadays, research topics on AI accelerator designs have attracted great interest, where accelerating Deep Neural Network (DNN) using Processing-in-Memory (PIM) platforms is an actively-explored direction with great potential. PIM platforms, which simultaneously aims to address power- and memory-wall bottlenecks, have shown orders of performance enhancement in comparison to the conventional computing platforms with Von-Neumann architecture. As one direction of accelerating DNN in PIM, resistive memory array (aka. crossbar) has drawn great research interest owing to its analog current-mode weighted summation operation which intrinsically matches the dominant Multiplication-and-Accumulation (MAC) operation in DNN, making it one of the most promising candidates. An alternative direction for PIM-based DNN acceleration is through bulk bit-wise logic operations directly performed on the content in digital memories. Thanks to the high fault-tolerant characteristic of DNN, the latest algorithmic progression successfully quantized DNN parameters to low bit-width representations, while maintaining competitive accuracy levels. Such DNN quantization techniques essentially convert MAC operation to much simpler addition/subtraction or comparison operations, which can be performed by bulk bit-wise logic operations in a highly parallel fashion. In this paper, we build a comprehensive evaluation framework to quantitatively compare and analyze aforementioned PIM based analog and digital approaches for DNN acceleration. 
    more » « less