skip to main content


Title: Social Robot Design Challenge: Gathering design requirements from teens
Design requirements can be gathered through a variety of ways; however, engaging teen audiences in design process can be challenging. We present a novel method for engaging teens in design through a social robot design challenge. Groups of teens participated in the challenge to prototype a social robot that would live in their high school and help address stress, a persistent and pervasive problem for this age group. In this paper, we present our methods and share preliminary findings.  more » « less
Award ID(s):
1734100 1814725 1633608 2027794 2125530
NSF-PAR ID:
10112434
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Interaction Design and Children 2019, June 12–15, 2019, Boise, ID
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social robots are emerging as an important intervention for a variety of vulnerable populations. However, engaging participants in the design of social robots in a way that is ethical, meaningful, and rigorous can be challenging. Many current methods in human–robotic interaction rely on laboratory practices, often experimental, and many times involving deception which could erode trust in vulnerable populations. Therefore, in this paper, we share our human-centered design methodology informed by a participatory approach, drawing on three years of data from a project aimed to design and develop a social robot to improve the mental health of teens. We present three method cases from the project that describe creative and age appropriate methods to gather contextually valid data from a teen population. Specific techniques include design research, scenario and script writing, prototyping, and teens as operators and collaborative actors. In each case, we describe the method and its implementation and discuss the potential strengths and limitations. We conclude by situating these methods by presenting a set of recommended participatory research principles that may be appropriate for designing new technologies with vulnerable populations. 
    more » « less
  2. Understanding people's attitudes towards robots and how those attitudes are affected by exposure to robots is essential to the effective design and development of social robots. Although researchers have been studying attitudes towards robots among adults and even children for more than a decade, little has been explored assessing attitudes among teens-a highly vulnerable population that presents unique opportunities and challenges for social robots. Our work aims to close this gap. In this paper we present findings from several participatory robot interaction and design sessions with 136 teenagers who completed a modified version of the Negative Attitudes Towards Robots Scale (NARS) before participation in a robot interaction. Our data reveal that most teens are 1) highly optimistic about the helpfulness of robots, 2) do not feel nervous talking with a robot, but also 3) do not trust a robot with their data. Ninety teens also completed a post-interaction survey and reported a significant change in the motional attitudes subscale of the NARS. We discuss the implications of our findings on the design of social robots for teens. 
    more » « less
  3. Social robots may be a promising social-emotional tool to support adolescent mental health. However, how might interactions with a social robot in a school setting be perceived by teens? From previous studies, we gathered qualitative data suggesting a design tension between teens wanting both public and private interactions with our social robot, EMAR. In our current study, we explored interactions between a social robot and a small group of adolescents in a semi-private, school library setting. We found: (1) Some teens preferred to have a friend present while they engaged with the social robot, (2) Teens found comfort in being physically visible, but audibly private during interactions, and finally (3) Strangers in the school environment were not disruptive of the teens' robot interactions, but unexpectedly friends were. After presenting these findings, we briefly discuss how these qualitative data can be situated and our next steps for further exploration. 
    more » « less
  4. Today’s teens will most likely be the first generation to spend a lifetime living and interacting with both mechanical and social robots. Although human-robot interaction has been explored in children, adults, and seniors, examination of teen-robot interaction has been minimal. In this paper, we provide evidence that teenrobot interaction is a unique area of inquiry and designing for teens is categorically different from other types of human-robot interaction. Using human-centered design, our team is developing a social robot to gather stress and mood data from teens in a public high school. To better understand teen-robot interaction, we conducted an interaction study in the wild to explore and capture teens’ interactions with a low-fidelity social robot prototype. Then, through group interviews we gathered data regarding their perceptions about social robots. Although we anticipated minimal engagement due to the low fidelity of our prototype, teens showed strong engagement and lengthy interactions. Additionally, teens expressed thoughtful articulations of how a social robot could be emotionally supportive. We conclude the paper by discussing future areas for consideration when designing for teen-robot interaction. 
    more » « less
  5. null (Ed.)
    With children spending more time online, personal data are stored on their devices making them susceptible to online risks. Exposing students to cybersecurity education at an early age is critical for raising awareness and knowledge. Yet access to cybersecurity education curricular materials that are engaging for young students is limited. In this work, we present interactive cybersecurity stories for students in grades 3-5 delivered through a commercial social robot. Through focus groups and interviews we subsequently investigated teachers’ views on using a social robot for cybersecurity education, interest in incorporating social robots in the classroom, and perceptions of the ways in which social robots can impact teaching practice and student learning. Findings indicated that teachers found the social robot engaging and expressed interest in using it in their classroom despite some concerns. Findings have implications for the design and implementation of cybersecurity curricula delivered through emerging technologies. 
    more » « less