skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teacher Views on Storytelling-based Cybersecurity Education with Social Robots
With children spending more time online, personal data are stored on their devices making them susceptible to online risks. Exposing students to cybersecurity education at an early age is critical for raising awareness and knowledge. Yet access to cybersecurity education curricular materials that are engaging for young students is limited. In this work, we present interactive cybersecurity stories for students in grades 3-5 delivered through a commercial social robot. Through focus groups and interviews we subsequently investigated teachers’ views on using a social robot for cybersecurity education, interest in incorporating social robots in the classroom, and perceptions of the ways in which social robots can impact teaching practice and student learning. Findings indicated that teachers found the social robot engaging and expressed interest in using it in their classroom despite some concerns. Findings have implications for the design and implementation of cybersecurity curricula delivered through emerging technologies.  more » « less
Award ID(s):
1821794
PAR ID:
10293432
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Interaction Design for Children
Page Range / eLocation ID:
508 to 512
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social robots have recently been gaining attention in the education field. Given their capabilities, researchers can use social robots in various ways that support human-robot interactions. In this paper, we present an interactive cybersecurity education program to teach children about foundation cybersecurity concepts using a social robot. To create child-robot interactions in cybersecurity education, we devised three processes. First, in collaboration with practicing teachers we developed an interactive story to support student engagement and learning of cybersecurity concepts. Second, we prototyped animations for the story on the social robot. Third, we use a mixed-methods approach to pilot test our cybersecurity education program. Our research highlights the potential of social robot use in education, both for child-robot interaction and K-12 cybersecurity education. 
    more » « less
  2. Robotics may be an ideal way to teach cybersecurity concepts to young students in the elementary classroom. Research shows robots can be an engaging experience and benefit learning in ways useful in other areas of education. Programming robots provides an ideal context for compelling demonstrations of cybersecurity concepts. Unplugged robotics activities benefit from the engaging aspect of robots but have the added advantage of bypassing hardware and making some concepts more transparent. Señor Robot is a gamified unplugged robotics activity modeled after some activities used before but specifically designed for cybersecurity education in the context of mathematics. The design and implementation of Señor Robot in a third-grade classroom is discussed along with observations and results of student assessments. Strengths and weaknesses of Señor Robot are examined and guide a proposed revision of the game called Frogbotics. An expanded instruction set and applicability to English language arts are considered along with ways to use Frogbotics to teach specific topics in cybersecurity. A website is provided as a dissemination point for materials developed in the study. 
    more » « less
  3. Background: There are 4.9 million English Language Learners (ELLs) in the United States. Only 2% of educators are trained to support these vulnerable students. Social robots show promise for language acquisition and may provide valuable support for students, especially as we return to needing smaller classes due to COVID-19. While cultural responsiveness increases gains for ELLs, little is known about the design of culturally responsive child–robot interactions. Method: Therefore, using a participatory design approach, we conducted an exploratory study with 24 Spanish-speaking ELLs at a Pacific Northwest elementary school. As cultural informants, students participated in a 15-min, robot-led, small group story discussion followed by a post-interaction feedback session. We then conducted reflexive critiques with six ELL teachers who reviewed the group interactions to provide further interpretation on design feature possibilities and potential interactions with the robot. Results: Students found the social robot engaging, but many were hesitant to converse with the robot. During post-interaction dialogue students articulated the specific ways in which the social robot appearance and behavior could be modified to help them feel more comfortable. Teachers postulated that the social robot could be designed to engage students in peer-to-peer conversations. Teachers also recognized the ELLs verbosity when discussing their experiences with the robot and suggested such interactions could stimulate responsiveness from students. Conclusion: Cultural responsiveness is a key component to successful education in ELLs. However, integrating appropriate, cultural responsiveness into robot interactions may require participants as cultural informants to ensure the robot behaviors and interactions are situated in that educational community. Utilizing a participatory approach to engage ELLs in design decisions for social robots is a promising way to gather culturally responsive requirements to inform successful child–robot interactions. 
    more » « less
  4. Educational technologies can provide students with adaptive feedback and guidance, but these systems lack personal interactions that make social and cultural connections to the student's own classroom and prior experiences. Social or companion robots have a high capacity for these types of interactions, but typically require advanced levels of expertise to program. In this study, we examined teachers use of an authoring tool to enable them to leverage their classroom-based expertise to design robot-assisted homework assignments, and explore how seeing a robot enact their designs influences their work. We found that the tool enabled the teachers to create novel social interactions for homework activities that were similar to their classroom interaction patterns. These interaction designs evolved over time and were shaped by the teacher's emerging mental model of the social robot, their concept of the students' perspective of these interactions, and a shift towards informal classroom-like interaction paradigms, thus transforming their view of what they can achieve with homework. We discuss how these findings demonstrate how the context of the activity can influence initial mental models of social activities and suggest practical guidance on designing authoring tools to best facilitate the creation of computer or robot supported social activities, such as homework. 
    more » « less
  5. Social-educational robotics, such as NAO humanoid robots with social, anthropomorphic, humanlike features, are tools for learning, education, and addressing developmental disorders (e.g., autism spectrum disorder or ASD) through social and collaborative robotic interactions and interventions. There are significant gaps at the intersection of social robotics and autism research dealing with how robotic technology helps ASD individuals with their social, emotional, and communication needs, and supports teachers who engage with ASD students. This research aims to (a) obtain new scientific knowledge on social-educational robotics by exploring the usage of social robots (especially humanoids) and robotic interventions with ASD students at high schools through an ASD student–teacher co-working with social robot–social robotic interactions triad framework; (b) utilize Business Model Canvas (BMC) methodology for robot design and curriculum development targeted at ASD students; and (c) connect interdisciplinary areas of consumer behavior research, social robotics, and human-robot interaction using customer discovery interviews for bridging the gap between academic research on social robotics on the one hand, and industry development and customers on the other. The customer discovery process in this research results in eight core research propositions delineating the contexts that enable a higher quality learning environment corresponding with ASD students’ learning requirements through the use of social robots and preparing them for future learning and workforce environments. 
    more » « less