skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Distributed‐by‐Design Approach to Supporting Collaborative Learning with Dynamic Mathematics Software
Fostering productive groupwork is a goal for many educators, but it can be difficult to implement effectively in mathematics classrooms. We have developed an approach, and a corresponding set of new tools, intended to support student participation in mathematically rich collaborative learning activities. This paper provides an overview of this 'Distributed by Design' approach. We elaborate key principles by illustrating three variations, in which we alternately distribute distinct but interdependent mathematical objects, views, or tools to each student in a cooperative group, and ask participants to coordinate those elements in completing a shared task. This approach is implemented with our MathNet software.  more » « less
Award ID(s):
1652372
PAR ID:
10112441
Author(s) / Creator(s):
Date Published:
Journal Name:
Educational designer
Volume:
3
Issue:
12
ISSN:
1759-1325
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Animations of scientific concepts may improve comprehension by explaining and visualizing the steps of complex processes, but unless they engage student interest in meaningful ways, their effectiveness as teaching tools is limited. We achieve this through a novel approach to animation design that includes the target audience (undergraduates) so that the resultant animations align with their learner characteristics. Objective: This case study investigated whether undergraduate-generated animations were more effective educational tools than informationally equivalent text-and-illustration presentations and whether learners’ background influenced the relative benefits of animations. Method: Incorporating feedback from faculty and undergraduates, we created animations and text-plus-illustration content to explain how neural signals are generated and measured by scalp electrodes. Neuroscience majors and non-majors were presented with either animations or static presentations followed by comprehension and engagement assessments. Results: Both groups showed comprehension and engagement benefits for animations. Although majors showed better overall comprehension, animations improved comprehension for non-majors over static presentations. Conclusion: When educational content is directed for a target audience, animations can be more effective teaching tools for a broader student audience. Teaching Implications: The relevance of online tools for remote instruction makes animations, developed for and by undergraduates, important tools for effectively introducing difficult content. 
    more » « less
  2. This paper details the process of developing and adapting a narrative framework for teaching an introductory geotechnical engineering course (EGR 340) through a systematic iterative procedure that embeds conceptual learning into a story format and, over time, elaborates elements and interactions within the story using methods of transmedia storytelling. Although the tools are presented within the context of geotechnical engineering, the approach can be applied throughout engineering education. The elaborative transmedia storytelling process we describe is based on the Imaginative Education (IE) teaching approach. Well-grounded in the learning sciences--but novel in engineering education--IE facilitates student engagement through the use of cognitive tools (such as extremes of reality, heroism, and the exploration of binaries). These tools are connected to types of understanding and serve to enhance a sense of mystery and wonder for topics that might not otherwise register as being immediately relevant to students. A significant benefit of this approach is that that it lends itself to modification and personalization through the inclusion of new features and methods of interaction at the level of the whole story and at the level of story elements. 
    more » « less
  3. This paper details the process of developing and adapting a narrative framework for teaching an introductory geotechnical engineering course (EGR 340) through a systematic iterative procedure that embeds conceptual learning into a story format and, over time, elaborates elements and interactions within the story using methods of transmedia storytelling. Although the tools are presented within the context of geotechnical engineering, the approach can be applied throughout engineering education. The elaborative transmedia storytelling process we describe is based on the Imaginative Education (IE) teaching approach. Well-grounded in the learning sciences--but novel in engineering education--IE facilitates student engagement through the use of cognitive tools (such as extremes of reality, heroism, and the exploration of binaries). These tools are connected to types of understanding and serve to enhance a sense of mystery and wonder for topics that might not otherwise register as being immediately relevant to students. A significant benefit of this approach is that that it lends itself to modification and personalization through the inclusion of new features and methods of interaction at the level of the whole story and at the level of story elements. Four types of understanding and their associated cognitive tools were used in EGR 340 and their application is described in this paper. They include: • Mythic understanding using a fantasy narrative that played on the idea that geotechnical engineers refer to their field as the “dark arts of engineering.” • Romantic understanding using heroic narratives that helped students put themselves in the place of Terzaghi and Casagrande as they developed the field. Extremes of reality was another Romantic tool used throughout the course. For example, students learned about soil stress by first solving the mystery of how quicksand works. • Theoretic understanding using concept maps and narrative was used at both the course and unit level to organize concepts. • Ironic understanding using discussion of the inadequacies of theoretic understanding to recognize the reference to “dark arts.” Transmedia storytelling through extensive use of short video clips and other means was used to enhance the application of these tools. For example, students traveled virtually to Venice where they joined a noisy gondola tour to examine building foundations and learn about how poor water policies impacted the sinking of the city. Course evaluation and lesson assessment data were collected in 2018, 2020, and 2022, with each year being associated with a different version of the course. Using these data, we present a mixed-methods analysis of learning outcomes that provides evidence for the effectiveness of this approach at different steps along the way. Non-parametric comparisons of student assessment data demonstrated that student conceptual learning was relatively stable across measures and versions, but that students in the fully transmedia iteration generally performed more strongly on assessments of project-based learning (Borrow/Fill; Atterberg; Dam). Thematic analysis of student responses to open-ended course evaluation prompts demonstrates that engagement was high across all versions of the course, and that students in the 2022 version discussed engineering topics in a manner that included personal connections and reflections. 
    more » « less
  4. Abstract BackgroundIn taking up educational technology tools and student‐centered instructional practice, there is consensus that instructors consider the unique aspects of their instructional context. However, tool adoption success is often framed narrowly by numerical uptake rates or by conformity with non‐negotiable components. PurposeWe pursue an alternative ecosystems framing which posits that variability among contexts is fundamental to understanding instructors' uptake of instructional tools and the ways their teaching trajectories develop over time. Design/MethodThrough a multiple‐case study approach using interviews, usage data, surveys, and records of community meetings, we examine 12 instructors' trajectories to illustrate the dynamic uptake of a technology tool. ResultsCross‐case analysis found that instructors' trajectories are tool‐mediated and community‐mediated. We present five cases in detail. Two foreground ways that instructors gained insight into student learning from student responses in the tool. Two illustrate the role played by the project's Community of Practice (CoP), an extra‐institutional support for deepening practice. The final case illustrates the complexity of an evolving instructional ecosystem and its role in instructors' satisfaction and continued use. ConclusionsUse of the educational technology tool perturbed ecosystems and supported instructors' evolving trajectories through mediation of instructor and student activity. Instructors' goals guided initial uptake, but both goals and practice were adapted using information from interactions with the tool and the CoP and changes in instructional contexts. The study confirms the need to understand the complexity of the uptake of innovations and illustrates opportunities for educators, developers, and administrators to enhance uptake and support diversity goals. 
    more » « less
  5. We share approaches for coordinating the use of many online educational tools within a CS2 course, including an eTextbook, automated grading system, programming practice website, diagramming tool, and debugger. These work with other commonly used tools such as a response system, forum, version control system, and our learning management system. We describe a number of approaches to deal with the potential negative effects of adopting so many tools. To improve student success we scaffold tool use by staging the addition of tools and by introducing individual tools in phases, we test tool assignments before student use, and we adapt tool use based on student feedback and performance. We streamline course management by consulting mentors who have used the tools before, starting small with room to grow, and choosing tools that simplify student account and grade management across multiple tools. 
    more » « less