skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: DyRep: Learning Representations over Dynamic Graphs
Representation Learning over graph structured data has received significant atten- tion recently due to its ubiquitous applicability. However, most advancements have been made in static graph settings while efforts for jointly learning dynamic of the graph and dynamic on the graph are still in an infant stage. Two fundamental questions arise in learning over dynamic graphs: (i) How to elegantly model dynamical processes over graphs? (ii) How to leverage such a model to effectively encode evolving graph information into low-dimensional representations? We present DyRep - a novel modeling framework for dynamic graphs that posits representation learning as a latent mediation process bridging two observed processes namely – dynamics of the network (realized as topological evolution) and dynamics on the network (realized as activities between nodes). Concretely, we propose a two-time scale deep temporal point process model that captures the interleaved dynamics of the observed processes. This model is further parameterized by a temporal-attentive representation network that encodes temporally evolving structural information into node representations which in turn drives the nonlinear evolution of the observed graph dynamics. Our unified framework is trained using an efficient unsupervised procedure and has capability to generalize over unseen nodes. We demonstrate that DyRep outperforms state-of-the-art baselines for dynamic link prediction and time prediction tasks and present extensive qualitative insights into our framework.  more » « less
Award ID(s):
1745382
PAR ID:
10112544
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Learning Representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Representation Learning over graph structured data has received significant attention recently due to its ubiquitous applicability. However, most advancements have been made in static graph settings while efforts for jointly learning dynamic of the graph and dynamic on the graph are still in an infant stage. Two fundamental questions arise in learning over dynamic graphs: (i) How to elegantly model dynamical processes over graphs? (ii) How to leverage such a model to effectively encode evolving graph information into low-dimensional representations? We present DyRep - a novel modeling framework for dynamic graphs that posits representation learning as a latent mediation process bridging two observed processes namely – dynamics of the network (realized as topological evolution) and dynamics on the network (realized as activities between nodes). Concretely, we propose a two-time scale deep temporal point process model that captures the interleaved dynamics of the observed processes. This model is further parameterized by a temporal-attentive representation network that encodes temporally evolving structural information into node representations which in turn drives the nonlinear evolution of the observed graph dynamics. Our unified framework is trained using an efficient unsupervised procedure and has capability to generalize over unseen nodes. We demonstrate that DyRep outperforms state-of-the-art baselines for dynamic link prediction and time prediction tasks and present extensive qualitative insights into our framework. 
    more » « less
  2. Representation Learning over graph structured data has received significant attention recently due to its ubiquitous applicability. However, most advancements have been made in static graph settings while efforts for jointly learning dynamic of the graph and dynamic on the graph are still in an infant stage. Two fundamental questions arise in learning over dynamic graphs: (i) How to elegantly model dynamical processes over graphs? (ii) How to leverage such a model to effectively encode evolving graph information into low-dimensional representations? We present DyRep - a novel modeling framework for dynamic graphs that posits representation learning as a latent mediation process bridging two observed processes namely -- dynamics of the network (realized as topological evolution) and dynamics on the network (realized as activities between nodes). Concretely, we propose a two-time scale deep temporal point process model that captures the interleaved dynamics of the observed processes. This model is further parameterized by a temporal-attentive representation network that encodes temporally evolving structural information into node representations which in turn drives the nonlinear evolution of the observed graph dynamics. Our unified framework is trained using an efficient unsupervised procedure and has capability to generalize over unseen nodes. We demonstrate that DyRep outperforms state-of-the-art baselines for dynamic link prediction and time prediction tasks and present extensive qualitative insights into our framework. 
    more » « less
  3. null (Ed.)
    Most graph neural network models learn embeddings of nodes in static attributed graphs for predictive analysis. Recent attempts have been made to learn temporal proximity of the nodes. We find that real dynamic attributed graphs exhibit complex phenomenon of co-evolution between node attributes and graph structure. Learning node embeddings for forecasting change of node attributes and evolution of graph structure over time remains an open problem. In this work, we present a novel framework called CoEvoGNN for modeling dynamic attributed graph sequence. It preserves the impact of earlier graphs on the current graph by embedding generation through the sequence of attributed graphs. It has a temporal self-attention architecture to model long-range dependencies in the evolution. Moreover, CoEvoGNN optimizes model parameters jointly on two dynamic tasks, attribute inference and link prediction over time. So the model can capture the co-evolutionary patterns of attribute change and link formation. This framework can adapt to any graph neural algorithms so we implemented and investigated three methods based on it: CoEvoGCN, CoEvoGAT, and CoEvoSAGE. Experiments demonstrate the framework (and its methods) outperforms strong baseline methods on predicting an entire unseen graph snapshot of personal attributes and interpersonal links in dynamic social graphs and financial graphs. 
    more » « less
  4. Real-world networked systems often show dynamic properties with continuously evolving network nodes and topology over time. When learning from dynamic networks, it is beneficial to correlate all temporal networks to fully capture the similarity/relevance between nodes. Recent work for dynamic network representation learning typically trains each single network independently and imposes relevance regularization on the network learning at different time steps. Such a snapshot scheme fails to leverage topology similarity between temporal networks for progressive training. In addition to the static node relationships within each network, nodes could show similar variation patterns (e.g., change of local structures) within the temporal network sequence. Both static node structures and temporal variation patterns can be combined to better characterize node affinities for unified embedding learning. In this paper, we propose Graph Attention Evolving Networks (GAEN) for dynamic network embedding with preserved similarities between nodes derived from their temporal variation patterns. Instead of training graph attention weights for each network independently, we allow model weights to share and evolve across all temporal networks based on their respective topology discrepancies. Experiments and validations, on four real-world dynamic graphs, demonstrate that GAEN outperforms the state-of-the-art in both link prediction and node classification tasks. 
    more » « less
  5. Network embedding has been an effective tool to analyze heterogeneous networks (HNs) by representing nodes in a low-dimensional space. Although many recent methods have been proposed for representation learning of HNs, there is still much room for improvement. Random walks based methods are currently popular methods to learn network embedding; however, they are random and limited by the length of sampled walks, and have difculty capturing network structural information. Some recent researches proposed using meta paths to express the sample relationship in HNs. Another popular graph learning model, the graph convolutional network (GCN) is known to be capable of better exploitation of network topology, but the current design of GCN is intended for homogenous networks. This paper proposes a novel combination of meta-graph and graph convolution, the meta-graph based graph convolutional networks (MGCN). To fully capture the complex long semantic information, MGCN utilizes different meta-graphs in HNs. As different meta-graphs express different semantic relationships, MGCN learns the weights of different meta-graphs to make up for the loss of semantics when applying GCN. In addition, we improve the current convolution design by adding node self-signicance. To validate our model in learning feature representation, we present comprehensive experiments on four real-world datasets and two representation tasks: classication and link prediction. WMGCN's representations can improve accuracy scores by up to around 10% in comparison to other popular representation learning models. What's more, WMGCN'feature learning outperforms other popular baselines. The experimental results clearly show our model is superior over other state-of-the-art representation learning algorithms. 
    more » « less