skip to main content


Title: A 0.4–1.2 GHz SiGe Cryogenic LNA for Readout of MKID Arrays
The design and characterization of a low noise amplifier optimized for the readout of microwave kinetic inductance detectors is described. The work is first motivated through a description of microwave kinetic inductance detectors and a discussion of the requirements for the low-noise amplifiers employed for readout of these devices. Next, the design of a two-stage silicon germanium cryogenic integrated circuit low noise amplifier is presented. The small-signal and large-signal characteristics of the fabricated amplifier are then measured. It is shown that, at a physical temperature of 16 K, the amplifier achieves a gain of greater than 30 dB and an average noise temperature of 3.3 K over the 0.4–1.2 GHz frequency band while dissipating less than 7 mW. Moreover, the wideband compression characteristics are measured it is found that the linearity of the amplifier is sufficient to support frequency domain multiplexed readout of more than 500 detectors.  more » « less
Award ID(s):
1636621
NSF-PAR ID:
10112748
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE/MTT-S International Microwave Symposium
Page Range / eLocation ID:
164-167
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe the newest generation of the SLAC Microresonator RF (SMuRF) electronics, a warm digital control and readout system for microwave-frequency resonator-based cryogenic detector and multiplexer systems, such as microwave superconducting quantum interference device multiplexers (μmux) or microwave kinetic inductance detectors. Ultra-sensitive measurements in particle physics and astronomy increasingly rely on large arrays of cryogenic sensors, which in turn necessitate highly multiplexed readout and accompanying room-temperature electronics. Microwave-frequency resonators are a popular tool for cryogenic multiplexing, with the potential to multiplex thousands of detector channels on one readout line. The SMuRF system provides the capability for reading out up to 3328 channels across a 4–8 GHz bandwidth. Notably, the SMuRF system is unique in its implementation of a closed-loop tone-tracking algorithm that minimizes RF power transmitted to the cold amplifier, substantially relaxing system linearity requirements and effective noise from intermodulation products. Here, we present a description of the hardware, firmware, and software systems of the SMuRF electronics, comparing achieved performance with science-driven design requirements. In particular, we focus on the case of large-channel-count, low-bandwidth applications, but the system has been easily reconfigured for high-bandwidth applications. The system described here has been successfully deployed in lab settings and field sites around the world and is baselined for use on upcoming large-scale observatories.

     
    more » « less
  2. Abstract

    Superconducting resonators are widely used in many applications such as qubit readout for quantum computing, and kinetic inductance detectors. These resonators are susceptible to numerous loss and noise mechanisms, especially the dissipation due to two‐level systems (TLS) which become the dominant source of loss in the few‐photon and low temperature regime. In this study, capacitively‐coupled aluminum half‐wavelength coplanar waveguide resonators are investigated. Surprisingly, the loss of the resonators is observed to decrease with a lowering temperature at low excitation powers and temperatures below the TLS saturation. This behavior is attributed to the reduction of the TLS resonant response bandwidth with decreasing temperature and power to below the detuning between the TLS and the resonant photon frequency in a discrete ensemble of TLS. When response bandwidths of TLS are smaller than their detunings from the resonance, the resonant response and thus the loss is reduced. At higher excitation powers, the loss follows a logarithmic power dependence, consistent with predictions from the generalized tunneling model (GTM). A model combining the discrete TLS ensemble with the GTM is proposed and matches the temperature and power dependence of the measured internal loss of the resonator with reasonable parameters.

     
    more » « less
  3. TolTEC is an upcoming millimeter-wave imaging polarimeter designed to fill the focal plane of the 50-m-diameter Large Millimeter Telescope (LMT). Combined with the LMT, TolTEC will offer high-angular-resolution (5–10 ) simultaneous, polarization-sensitive observations in three wavelength bands: 1.1, 1.4, and 2.0 mm. Additionally, TolTEC will feature mapping speeds greater than 2 deg2∕mJy2∕h , thus enabling wider surveys of large-scale structure, galaxy evolution, and star formation. These improvements are only possible through the integration of approximately 7000 low-noise, high-responsivity superconducting Lumped Element Kinetic Inductance Detectors. Utilizing three focal planes of detector arrays requires the design, fabrication, and characterization of a unique, large-scale cryogenic system. Based on thermal models and expected photon loading, the focal planes must have a base operational temperature below 150 mK. To achieve this base temperature, TolTEC utilizes two cryocoolers, a Cryomech pulse tube cooler and an Oxford Instruments dilution refrigerator, to establish four thermal stages: 45 K, 4 K, 1 K, and 100 mK. During the design phase, we developed an object-oriented Python code to model the heat loading on each stage as well as the thermal gradients throughout the system. This model has allowed us to improve thermal gradients in the system as well as locate areas of poor thermal conductivity prior to ending a cooldown. The results of our model versus measurements from our cooldowns will be presented along with a detailed overview of TolTEC’s cryogenic system. We anticipate TolTEC to be commissioned at the LMT by Spring 2020. 
    more » « less
  4. Microwave loss in superconducting TiN films is attributed to two-level systems in various interfaces arising in part from oxidation and microfabrication-induced damage. Atomic layer etching (ALE) is an emerging subtractive fabrication method which is capable of etching with angstrom-scale etch depth control and potentially less damage. However, while ALE processes for TiN have been reported, they either employ HF vapor, incurring practical complications, or the etch rate lacks the desired control. Furthermore, the superconducting characteristics of the etched films have not been characterized. Here, we report an isotropic plasma-thermal TiN ALE process consisting of sequential exposures to molecular oxygen and an SF6/H2 plasma. For certain ratios of SF6:H2 flow rates, we observe selective etching of TiO2 over TiN, enabling self-limiting etching within a cycle. Etch rates were measured to vary from 1.1 Å/cycle at 150°C to 3.2 Å/cycle at 350°C using ex situ ellipsometry. We demonstrate that the superconducting critical temperature of the etched film does not decrease beyond that expected from the decrease in film thickness, highlighting the low-damage nature of the process. These findings have relevance for applications of TiN in microwave kinetic inductance detectors and superconducting qubits. 
    more » « less
  5. The BICEP/Keck Collaboration is currently leading the quest to the highest sensitivity measurements of the polarized CMB anisotropies on degree scale with a series of cryogenic telescopes, of which BICEP Array is the latest Stage-3 upgrade with a total of ∼32,000 detectors. The instrument comprises 4 receivers spanning 30 to 270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor to scalar ratio r. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design. In this paper I will present the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first-stage SQUID amplifiers is crucial to maintain a stiff voltage bias on the detectors. A novel multi-layer FR4 Printed Circuit Board (PCB) with superconducting traces, capable of reading out up to 648 detectors, is presented along with its validation tests. I will also describe an ultra-high density TDM detector module we developed for a CMB-S4-like experiment that allows up to 1,920 detectors to be read out. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs and overall maturity of the architecture. The heritage for TDM is rooted in mm- and submm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments. 
    more » « less