skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anomalous Loss Reduction Below Two‐Level System Saturation in Aluminum Superconducting Resonators
Abstract Superconducting resonators are widely used in many applications such as qubit readout for quantum computing, and kinetic inductance detectors. These resonators are susceptible to numerous loss and noise mechanisms, especially the dissipation due to two‐level systems (TLS) which become the dominant source of loss in the few‐photon and low temperature regime. In this study, capacitively‐coupled aluminum half‐wavelength coplanar waveguide resonators are investigated. Surprisingly, the loss of the resonators is observed to decrease with a lowering temperature at low excitation powers and temperatures below the TLS saturation. This behavior is attributed to the reduction of the TLS resonant response bandwidth with decreasing temperature and power to below the detuning between the TLS and the resonant photon frequency in a discrete ensemble of TLS. When response bandwidths of TLS are smaller than their detunings from the resonance, the resonant response and thus the loss is reduced. At higher excitation powers, the loss follows a logarithmic power dependence, consistent with predictions from the generalized tunneling model (GTM). A model combining the discrete TLS ensemble with the GTM is proposed and matches the temperature and power dependence of the measured internal loss of the resonator with reasonable parameters.  more » « less
Award ID(s):
2004386
PAR ID:
10477597
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Quantum Technologies
Volume:
7
Issue:
2
ISSN:
2511-9044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We examine the DC and radio frequency (RF) response of superconducting transmission line resonators comprised of very thin NbTiN films, [Formula: see text] in thickness, in the high-temperature limit, where the photon energy is less than the thermal energy. The resonant frequencies of these superconducting resonators show a significant nonlinear response as a function of RF input power, which can approach a frequency shift of [Formula: see text] in a [Formula: see text] span in the thinnest film. The strong nonlinear response allows these very thin film resonators to serve as high kinetic inductance parametric amplifiers. 
    more » « less
  2. Silicon microring resonators are being recently used for high-brightness and efficient photon-pair generation at telecommunication wavelengths. Here, based on detailed theoretical and numerical modeling, we study the impact on pair generation of increasing the optical pump power, which generally causes nonlinear impairments such as free-carrier and two-photon absorption in silicon micro-resonators. Contrary to expectation, the pair generation properties of such devices may seem to be preserved at increasing pump powers, although not better than at a moderate pump power. These results suggest that silicon microrings can be used for pair generation over a wide range of pump powers, which may benefit applications in remotely pumped architectures, where the pump level might not be known a priori. 
    more » « less
  3. Investigations of entangled and classical two-photon absorption have been carried out for six donor (D)-acceptor(A)-donor(D) compounds containing the dithieno pyrrole (DTP) unit as donor and acceptors with systematically varied electronic properties. Comparing ETPA (quantum) and TPA (classical) results reveals that the ETPA cross section decreases with increasing TPA cross section for molecules with highly off-resonant excited states for single photon excitation. Theory (TDDFT) results are in semiquantitative agreement with this anticorrelated behavior, due to the dependence of the ETPA cross section but not TPA on the two-photon excited state lifetime. The largest cross section is found for a DTP derivative that has a single photon excitation energy closest to resonance with half the two-photon excitation energy. These results are important to the possible use of quantum light for low intensity energy conversion applications. 
    more » « less
  4. Multiphoton absorption of entangled photons offers ways for obtaining unique information about chemical and biological processes. Measurements with entangled photons may enable sensing biological signatures with high selectivity and at very low light levels to protect against photodamage. In this paper, we present a theoretical and experimental study of the excitation wavelength dependence of the entangled two-photon absorption (ETPA) process in a molecular system, which provides insights into how entanglement affects molecular spectra. We demonstrate that the ETPA excitation spectrum can be different from that of classical TPA as well as that for one-photon resonant absorption (OPA) with photons of doubled frequency. These results are modeled by assuming the ETPA cross-section is governed by a two-photon excited state radiative linewidth rather than by electron-phonon interactions, and this leads to excitation spectra that match the observed results. Further, we find that the two-photon-allowed states with highest TPA and ETPA intensities have high electronic entanglements, with ETPA especially favoring states with the longest radiative lifetimes. These results provide concepts for the development of quantum light–based spectroscopy and microscopy that will lead to much higher efficiency of ETPA sensors and low-intensity detection schemes. 
    more » « less
  5. Abstract Single-photon defect emitters (SPEs), especially those with magnetically and optically addressable spin states, in technologically mature wide bandgap semiconductors are attractive for realizing integrated platforms for quantum applications. Broadening of the zero phonon line (ZPL) caused by dephasing in solid state SPEs limits the indistinguishability of the emitted photons. Dephasing also limits the use of defect states in quantum information processing, sensing, and metrology. In most defect emitters, such as those in SiC and diamond, interaction with low-energy acoustic phonons determines the temperature dependence of the dephasing rate and the resulting broadening of the ZPL with the temperature obeys a power law. GaN hosts bright and stable single-photon emitters in the 600–700 nm wavelength range with strong ZPLs even at room temperature. In this work, we study the temperature dependence of the ZPL spectra of GaN SPEs integrated with solid immersion lenses with the goal of understanding the relevant dephasing mechanisms. At temperatures below ~ 50 K, the ZPL lineshape is found to be Gaussian and the ZPL linewidth is temperature independent and dominated by spectral diffusion. Above ~ 50 K, the linewidth increases monotonically with the temperature and the lineshape evolves into a Lorentzian. Quite remarkably, the temperature dependence of the linewidth does not follow a power law. We propose a model in which dephasing caused by absorption/emission of optical phonons in an elastic Raman process determines the temperature dependence of the lineshape and the linewidth. Our model explains the temperature dependence of the ZPL linewidth and lineshape in the entire 10–270 K temperature range explored in this work. The ~ 19 meV optical phonon energy extracted by fitting the model to the data matches remarkably well the ~ 18 meV zone center energy of the lowest optical phonon band ($$E_{2}(low)$$ E 2 ( l o w ) ) in GaN. Our work sheds light on the mechanisms responsible for linewidth broadening in GaN SPEs. Since a low energy optical phonon band ($$E_{2}(low)$$ E 2 ( l o w ) ) is a feature of most group III–V nitrides with a wurtzite crystal structure, including hBN and AlN, we expect our proposed mechanism to play an important role in defect emitters in these materials as well. 
    more » « less