skip to main content


Title: Learning Sparse Neural Networks via ℓ0 and Tℓ1 by a Relaxed Variable Splitting Method with Application to Multi-scale Curve Classification
We study sparsification of convolutional neural networks (CNN) by a relaxed variable splitting method of ℓ0 and transformed-ℓ1 (Tℓ1) penalties, with application to complex curves such as texts written in different fonts, and words written with trembling hands simulating those of Parkinson’s disease patients. The CNN contains 3 convolutional layers, each followed by a maximum pooling, and finally a fully connected layer which contains the largest number of network weights. With ℓ0 penalty, we achieved over 99% test accuracy in distinguishing shaky vs. regular fonts or hand writings with above 86% of the weights in the fully connected layer being zero. Comparable sparsity and test accuracy are also reached with a proper choice of Tℓ1 penalty.  more » « less
Award ID(s):
1632935
NSF-PAR ID:
10112757
Author(s) / Creator(s):
;
Date Published:
Journal Name:
6th World Congress on Global Optimization
Page Range / eLocation ID:
800-809
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tabacu, Lucia (Ed.)
    Convolutional neural networks (CNN) have been hugely successful recently with superior accuracy and performance in various imaging applications, such as classification, object detection, and segmentation. However, a highly accurate CNN model requires millions of parameters to be trained and utilized. Even to increase its performance slightly would require significantly more parameters due to adding more layers and/or increasing the number of filters per layer. Apparently, many of these weight parameters turn out to be redundant and extraneous, so the original, dense model can be replaced by its compressed version attained by imposing inter- and intra-group sparsity onto the layer weights during training. In this paper, we propose a nonconvex family of sparse group lasso that blends nonconvex regularization (e.g., transformed ℓ1, ℓ1 − ℓ2, and ℓ0) that induces sparsity onto the individual weights and ℓ2,1 regularization onto the output channels of a layer. We apply variable splitting onto the proposed regularization to develop an algorithm that consists of two steps per iteration: gradient descent and thresholding. Numerical experiments are demonstrated on various CNN architectures showcasing the effectiveness of the nonconvex family of sparse group lasso in network sparsification and test accuracy on par with the current state of the art. 
    more » « less
  2. We trained convolutional neural networks (CNNs) to suppress off-axis scattering in the short-time Fourier Transform (STFT) domain. Our training data were point target responses from simulated anechoic cysts. We used random neural architecture search to build CNN models with variable input formulations, layer sizes, and training hyperparameters. Our results showed that CNNs were easier to train, as they required fewer network weights to match the performance of fully-connected networks (FCNs). The best CNN models achieved comparable phantom CNRs with with two to three orders of magnitude fewer weights. 
    more » « less
  3. Convolutional neural networks (CNN) have been hugely successful recently with superior accuracy and performance in various imaging applications, such as classification, object detection, and segmentation. However, a highly accurate CNN model requires millions of parameters to be trained and utilized. Even to increase its performance slightly would require significantly more parameters due to adding more layers and/or increasing the number of filters per layer. Apparently, many of these weight parameters turn out to be redundant and extraneous, so the original, dense model can be replaced by its compressed version attained by imposing inter- and intra-group sparsity onto the layer weights during training. In this paper, we propose a nonconvex family of sparse group lasso that blends nonconvex regularization (e.g., transformed L1, L1 - L2, and L0) that induces sparsity onto the individual weights and L2,1 regularization onto the output channels of a layer. We apply variable splitting onto the proposed regularization to develop an algorithm that consists of two steps per iteration: gradient descent and thresholding. Numerical experiments are demonstrated on various CNN architectures showcasing the effectiveness of the nonconvex family of sparse group lasso in network sparsification and test accuracy on par with the current state of the art. 
    more » « less
  4. Abstract

    The implementation of intelligent software to identify and classify objects and individuals in visual fields is a technology of growing importance to operatives in many fields, including wildlife conservation and management. To non-experts, the methods can be abstruse and the results mystifying. Here, in the context of applying cutting edge methods to classify wildlife species from camera-trap data, we shed light on the methods themselves and types of features these methods extract to make efficient identifications and reliable classifications. The current state of the art is to employ convolutional neural networks (CNN) encoded within deep-learning algorithms. We outline these methods and present results obtained in training a CNN to classify 20 African wildlife species with an overall accuracy of 87.5% from a dataset containing 111,467 images. We demonstrate the application of a gradient-weighted class-activation-mapping (Grad-CAM) procedure to extract the most salient pixels in the final convolution layer. We show that these pixels highlight features in particular images that in some cases are similar to those used to train humans to identify these species. Further, we used mutual information methods to identify the neurons in the final convolution layer that consistently respond most strongly across a set of images of one particular species. We then interpret the features in the image where the strongest responses occur, and present dataset biases that were revealed by these extracted features. We also used hierarchical clustering of feature vectors (i.e., the state of the final fully-connected layer in the CNN) associated with each image to produce a visual similarity dendrogram of identified species. Finally, we evaluated the relative unfamiliarity of images that were not part of the training set when these images were one of the 20 species “known” to our CNN in contrast to images of the species that were “unknown” to our CNN.

     
    more » « less
  5. Batch Normalization (BN) is essential to effectively train state-of-the-art deep Convolutional Neural Networks (CNN). It normalizes the layer outputs during training using the statistics of each mini-batch. BN accelerates training procedure by allowing to safely utilize large learning rates and alleviates the need for careful initialization of the parameters. In this work, we study BN from the viewpoint of Fisher kernels that arise from generative probability models. We show that assuming samples within a mini-batch are from the same probability density function, then BN is identical to the Fisher vector of a Gaussian distribution. That means batch normalizing transform can be explained in terms of kernels that naturally emerge from the probability density function that models the generative process of the underlying data distribution. Consequently, it promises higher discrimination power for the batch-normalized mini-batch. However, given the rectifying non-linearities employed in CNN architectures, distribution of the layer outputs show an asymmetric characteristic. Therefore, in order for BN to fully benefit from the aforementioned properties, we propose approximating underlying data distribution not with one, but a mixture of Gaussian densities. Deriving Fisher vector for a Gaussian Mixture Model (GMM), reveals that batch normalization can be improved by independently normalizing with respect to the statistics of disentangled sub-populations. We refer to our proposed soft piecewise version of batch normalization as Mixture Normalization (MN). Through extensive set of experiments on CIFAR-10 and CIFAR-100, using both a 5-layers deep CNN and modern Inception-V3 architecture, we show that mixture normalization reduces required number of gradient updates to reach the maximum test accuracy of the batch normalized model by ∼31%-47% across a variety of training scenarios. Replacing even a few BN modules with MN in the 48-layers deep Inception-V3 architecture is sufficient to not only obtain considerable training acceleration but also better final test accuracy. We show that similar observations are valid for 40 and 100-layers deep DenseNet architectures as well. We complement our study by evaluating the application of mixture normalization to the Generative Adversarial Networks (GANs), where "mode collapse" hinders the training process. We solely replace a few batch normalization layers in the generator with our proposed mixture normalization. Our experiments using Deep Convolutional GAN (DCGAN) on CIFAR-10 show that mixture normalized DCGAN not only provides an acceleration of ∼58% but also reaches lower (better) "Fréchet Inception Distance" (FID) of 33.35 compared to 37.56 of its batch normalized counterpart. 
    more » « less