Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Convolutional neural networks (CNN) have been hugely successful recently with superior accuracy and performance in various imaging applications, such as classification, object detection, and segmentation. However, a highly accurate CNN model requires millions of parameters to be trained and utilized. Even to increase its performance slightly would require significantly more parameters due to adding more layers and/or increasing the number of filters per layer. Apparently, many of these weight parameters turn out to be redundant and extraneous, so the original, dense model can be replaced by its compressed version attained by imposing inter- and intra-group sparsity onto the layer weightsmore »
-
In the last decade, convolutional neural networks (CNNs) have evolved to become the dominant models for various computer vision tasks, but they cannot be deployed in low-memory devices due to its high memory requirement and computational cost. One popular, straightforward approach to compressing CNNs is network slimming, which imposes an L1 penalty on the channel-associated scaling factors in the batch normalization layers during training. In this way, channels with low scaling factors are identified to be insignificant and are pruned in the models. In this paper, we propose replacing the L1 penalty with the Lp and transformed L1 (TL1) penaltiesmore »
-
The outbreaks of Coronavirus Disease 2019 (COVID-19) have impacted the world significantly. Modeling the trend of infection and realtime forecasting of cases can help decision making and control of the disease spread. However, data-driven methods such as recurrent neural networks (RNN) can perform poorly due to limited daily samples in time. In this work, we develop an integrated spatiotemporal model based on the epidemic differential equations (SIR) and RNN. The former after simplification and discretization is a compact model of temporal infection trend of a region while the latter models the effect of nearest neighboring regions. The latter captures latentmore »
-
We consider diffusivity of random walks with transition probabilities depending on the number of consecutive traversals of the last traversed edge, the so called senile reinforced random walk (SeRW). In one dimension, the walk is known to be sub-diffusive with identity reinforcement function. We perturb the model by introducing a small probability δ of escaping the last traversed edge at each step. The perturbed SeRW model is diffusive for any δ > 0 , with enhanced diffusivity (≫ O ( δ^2 ) ) in the small δ regime. We further study stochastically perturbed SeRW models by having the last edgemore »
-
Sparsification of neural networks is one of the effective complexity reduction methods to improve efficiency and generalizability. We consider the problem of learning a one hidden layer convolutional neural network with ReLU activation function via gradient descent under sparsity promoting penalties. It is known that when the input data is Gaussian distributed, no-overlap networks (without penalties) in regression problems with ground truth can be learned in polynomial time at high probability. We propose a relaxed variable splitting method integrating thresholding and gradient descent to overcome the non-smoothness in the loss function. The sparsity in network weight is realized during themore »
-
ShuffleNet is a state-of-the-art light weight convolutional neural network architecture. Its basic operations include group, channelwise convolution and channel shuffling. However, channel shuffling is manually designed on empirical grounds. Mathematically, shuffling is a multiplication by a permutation matrix. In this paper, we propose to automate channel shuffling by learning permutation matrices in network training. We introduce an exact Lipschitz continuous non-convex penalty so that it can be incorporated in the stochastic gradient descent to approximate permutation at high precision. Exact permutations are obtained by simple rounding at the end of training and are used in inference. The resulting network, referredmore »
-
The outbreaks of Coronavirus Disease 2019 (COVID-19) have impacted the world significantly. Modeling the trend of infection and real-time forecasting of cases can help decision making and control of the disease spread. However, data-driven methods such as recurrent neural networks (RNN) can perform poorly due to limited daily samples in time. In this work, we develop an integrated spatiotemporal model based on the epidemic differential equations (SIR) and RNN. The former after simplification and discretization is a compact model of temporal infection trend of a region while the latter models the effect of nearest neighboring regions. The latter captures latentmore »