skip to main content


Title: A Shake-Table Test Investigating the Drift Capacity of Reinforced Masonry Wall Systems
An accurate quantification of the displacement capacity of a reinforced masonry shear-wall system is of critical importance to seismic design because it has a direct implication on the seismic force modification factor, which is the R factor in ASCE 7. In spite of the shear capacity design requirement in TMS 402, special reinforced masonry walls within a building system could still develop shear-dominated behavior, which is perceived to be far more brittle than flexural behavior. These walls have a low shear-span ratio either because of the wall geometry (i.e., a low height-to-length ratio) or the coupling forces introduced by the horizontal diaphragms, which are often ignored in design. Although shear-dominated walls appeared to be very brittle in quasi-static tests conducted on single planar wall segments, reinforced masonry structures survived major ground shaking well in past earthquakes. This could be partly attributed to the beneficial influence of wall flanges as well as the over-strength of the system. Flanged walls are common in masonry buildings, but their behavior is not well understood because of the lack of laboratory test data. Furthermore, other walls or columns that are present in the structural system to carry gravity loads could enhance the lateral resistance of the shear walls and the displacement capacity of the system by providing axial restraints as well as alternative load paths for gravity loads. A research project is being carried out with shake-table tests to investigate the displacement capacity of shear-dominated reinforced masonry wall systems. This paper presents results of the first shake-table test conducted in this project on a full-scale single-story coupled T-wall system. The structure was tested to a drift ratio exceeding 15% without collapse.  more » « less
Award ID(s):
1728685
NSF-PAR ID:
10112827
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings - North American Masonry Conference
ISSN:
1053-2366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An accurate quantification of the displacement capacity of a reinforced masonry shear-wall system is of critical importance to seismic design because it has a direct implication on the seismic force modification factor, which is the R factor in ASCE 7. In spite of the shear capacity design requirement in TMS 402, special reinforced masonry walls within a building system could still develop shear-dominated behavior, which is perceived to be far more brittle than flexural behavior. These walls have a low shear-span ratio either because of the wall geometry (i.e., a low height-to-length ratio) or the coupling forces introduced by the horizontal diaphragms, which are often ignored in design. Although shear-dominated walls appeared to be very brittle in quasi-static tests conducted on single planar wall segments, reinforced masonry structures survived major ground shaking well in past earthquakes. This could be partly attributed to the beneficial influence of wall flanges as well as the over-strength of the system. Flanged walls are common in masonry buildings, but their behavior is not well understood because of the lack of laboratory test data. Furthermore, other walls or columns that are present in the structural system to carry gravity loads could enhance the lateral resistance of the shear walls and the displacement capacity of the system by providing axial restraints as well as alternative load paths for gravity loads. A research project is being carried out with shake-table tests to investigate the displacement capacity of shear-dominated reinforced masonry wall systems. This paper presents results of the first shake-table test conducted in this project on a full-scale single-story coupled T-wall system. The structure was tested to a drift ratio exceeding 15% without collapse. 
    more » « less
  2. An accurate quantification of the displacement capacity of a reinforced masonry shear-wall system is of critical importance to seismic design because it has a direct implication on the seismic force modification factor, which is the R factor in ASCE 7. In spite of the shear capacity design requirement in TMS 402, special reinforced masonry walls within a building system could still develop shear-dominated behavior, which is perceived to be far more brittle than flexural behavior. These walls have a low shear-span ratio either because of the wall geometry (i.e., a low height-to-length ratio) or the coupling forces introduced by the horizontal diaphragms, which are often ignored in design. Although shear-dominated walls appeared to be very brittle in quasi-static tests conducted on single planar wall segments, reinforced masonry structures survived major ground shaking well in past earthquakes. This could be partly attributed to the beneficial influence of wall flanges as well as the over-strength of the system. Flanged walls are common in masonry buildings, but their behavior is not well understood because of the lack of laboratory test data. Furthermore, other walls or columns that are present in the structural system to carry gravity loads could enhance the lateral resistance of the shear walls and the displacement capacity of the system by providing axial restraints as well as alternative load paths for gravity loads. A research project is being carried out with shake-table tests to investigate the displacement capacity of shear-dominated reinforced masonry wall systems. This paper presents results of the first shake-table test conducted in this project on a full-scale single-story coupled T-wall system. The structure was tested to a drift ratio exceeding 15% without collapse. 
    more » « less
  3. Summary

    In regions of low to moderate seismicity in North America, reinforced masonry structures are mostly partially grouted. The behavior of such structures under lateral seismic loads is complicated because of the interaction of the grouted and ungrouted masonry. As revealed in past experimental studies, the performance of partially grouted masonry (PGM) walls under in‐plane cyclic lateral loading is inferior to that of fully grouted walls. However, the dynamic behavior of a PGM wall system under severe seismic loads is not well understood. In this study, a full‐scale, one‐story, PGM building designed for a moderate seismic zone according to current code provisions was tested on a shake table. It was shown that the structure was able to develop an adequate base shear capacity and withstand two earthquake motions that had an effective intensity of two times the maximum considered earthquake with only moderate cracking in mortar joints. However, the structure eventually failed in a brittle manner in a subsequent motion that had a slightly lower effective intensity. A detailed finite element model of the test structure has been developed and validated. The model has been used to understand the distribution of the lateral force resistance among the wall components and to evaluate the shear‐strength equation given in the design code. The code equation has been found to be adequate for this structure. Furthermore, a parametric study conducted with the finite element model has shown that the introduction of a continuous bond beam right below a window opening is highly beneficial.

     
    more » « less
  4. Summary

    This paper presents a shake‐table test study to investigate the displacement capacity of shear‐dominated reinforced masonry wall systems and the influence of wall flanges and planar walls perpendicular to the direction of shaking (out‐of‐plane walls) on the seismic performance of a wall system. Two full‐scale, single‐story, fully grouted, reinforced masonry wall specimens were tested to the verge of collapse. Each specimen had two T‐walls as the seismic force‐resisting elements and a stiff roof diaphragm. The second specimen had six additional planar walls perpendicular to the direction of shaking. The two specimens reached maximum roof drift ratios of 17% and 13%, without collapsing. The high displacement capacities can be largely attributed to the presence of wall flanges and, for the second specimen, also the out‐of‐plane walls, which provided an alternative load path to carry the gravity load when the webs of the T‐walls had been severely damaged. The second specimen developed a higher lateral resistance than the first owing to the additional axial compression exerted on the T‐walls by the out‐of‐plane walls when the former rocked. The shear resistance of the T‐walls evaluated with the design code formula matches the test result well when this additional axial compression is taken into account. However, it must be understood that the beneficial influence of the wall flanges depends on the magnitude of the gravity load because of the P‐Δ effect and the severity of damage induced in the wall flanges when the wall system is subjected to bidirectional ground motions.

     
    more » « less
  5. Abstract

    Use of cold‐formed steel (CFS) framing as load‐bearing system for gravity and lateral loads in buildings is becoming increasingly common in the North American construction industry, notably in high seismic regions where light‐weight construction is an attractive option. Buildings framed with closely spaced and repetitively placed CFS members can be detailed to develop lateral resistance using a variety of sheathing options. A relatively new option involves the use of steel sheet as sheathing. Steel sheet sheathed CFS shear walls offer high lateral strength and stiffness, and provide ductility courtesy of tension field action within the steel sheet. Despite their acceptance, gaps in the understanding of their behavior do exist, notably, behavior under dynamic loading, the contribution of nonstructural architectural finishes, and the behavior of wall‐lines: shear walls placed inline with gravity walls. To this end, a two‐phased experimental effort was undertaken to advance understanding of the lateral response of CFS‐framed wall‐line systems. Specifically, a suite of wall‐lines, detailed for mid‐rise buildings, were evaluated through simulated seismic loading imposed via shake table and quasi‐static cyclic tests. Damage to the wall‐lines was largely manifested in the form of damage to fastener connections used for attaching the sheathing and gypsum panels, and separation of exterior finish layer. This paper documents and quantifies the progressively incurred physical damage observed in the tested wall‐line assemblies, and correlates it with the evolution of dynamic characteristics and hysteretic energy dissipated across a spectrum of performance levels.

     
    more » « less