skip to main content

Title: Towards a Unified Planner For Socially-Aware Navigation
This paper presents a novel architecture to attain a Unified Planner for Socially-aware Navigation (UP-SAN) and explains its need in Socially Assistive Robotics (SAR) applications. Our approach emphasizes interpersonal distance and how spatial communication can be used to build a unified planner for a human-robot collaborative environment. Socially-Aware Navigation (SAN) is vital to make humans feel comfortable and safe around robots, HRI studies have show that the importance of SAN transcendent safety and comfort. SAN plays a crucial role in perceived intelligence, sociability and social capacity of the robot thereby increasing the acceptance of the robots in public places. Human environments are very dynamic and pose serious social challenges to the robots indented for human interactions. For the robots to cope with the changing dynamics of a situation, there is a need to infer intent and detect changes in the interaction context. SAN has gained immense interest in the social robotics community; to the best of our knowledge, however, there is no planner that can adapt to different interaction contexts spontaneously after autonomously sensing that context. Most of the recent efforts involve social path planning for a single context. In this work, we propose a novel approach for a Unified more » Planner for SAN that can plan and execute trajectories that are human-friendly for an autonomously sensed interaction context. Our approach augments the navigation stack of Robot Operating System (ROS) utilizing machine learn- ing and optimization tools. We modified the ROS navigation stack using a machine learning-based context classifier and a PaCcET based local planner for us to achieve the goals of UP- SAN. We discuss our preliminary results and concrete plans on putting the pieces together in achieving UP-SAN. « less
Award ID(s):
Publication Date:
Journal Name:
AAAI Fall Symposium Series: AI-HRI Artificial Intelligence for Human-Robot Interaction
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile robots are increasingly populating homes, hospitals, shopping malls, factory floors, and other human environments. Human society has social norms that people mutually accept; obeying these norms is an essential signal that someone is participating socially with respect to the rest of the population. For robots to be socially compatible with humans, it is crucial for robots to obey these social norms. In prior work, we demonstrated a Socially-Aware Navigation (SAN) planner, based on Pareto Concavity Elimination Transformation (PaCcET), in a hallway scenario, optimizing two objectives so the robot does not invade the personal space of people. This article extends our PaCcET-based SAN planner to multiple scenarios with more than two objectives. We modified the Robot Operating System’s (ROS) navigation stack to include PaCcET in the local planning task. We show that our approach can accommodate multiple Human-Robot Interaction (HRI) scenarios. Using the proposed approach, we achieved successful HRI in multiple scenarios such as hallway interactions, an art gallery, waiting in a queue, and interacting with a group. We implemented our method on a simulated PR2 robot in a 2D simulator (Stage) and a pioneer-3DX mobile robot in the real-world to validate all the scenarios. A comprehensive set of experimentsmore »shows that our approach can handle multiple interaction scenarios on both holonomic and non-holonomic robots; hence, it can be a viable option for a Unified Socially-Aware Navigation (USAN).« less
  2. For socially assistive robots (SAR) to be accepted into complex and stochastic human environments, it is important to account for subtle social norms. In this paper, we propose a novel approach to socially-aware navigation (SAN) which garnered an immense interest in the Human-Robot Interaction(HRI) community. We use a multi-objective optimization tool called the Pareto Concavity Elimination Transformation (PaCcET) to capture the non-linear human navigation behavior, a novel contribution to the community. We use autonomously sensed distance-based features that captures the social norms and associated social costs for a given trajectory point towards the goal. Rather than use a finely-tuned linear combination of these costs, we use PaCcET to select an optimized future trajectory point, associated with a non-linear combination of the costs. Existing research in this domain concentrates on geometric reasoning, model-based, and learning approaches, which have their own pros and cons. This approach is distinct from prior work in this area. We showed in a simulation that the PaCcET based trajectory planner not only is able to avoid collisions and reach the intended destination in static and dynamic environments but also considers a human’s personal space in the trajectory selection process.
  3. This work presents ideation and preliminary results of using contextual information and information of the objects present in the scene to query applicable social navigation rules for the sensed context. Prior work in socially-Aware Navigation (SAN) shows its importance in human-robot interaction as it improves the interaction quality, safety and comfort of the interacting partner. In this work, we are interested in automatic detection of social rules in SAN and we present three major components of our method, namely: a Convolutional Neural Network-based context classifier that can autonomously perceive contextual information using camera input; a YOLO-based object detection to localize objects with a scene; and a knowledge base of social rules relationships with the concepts to query them using both contextual and detected objects in the scene. Our preliminary results suggest that our approach can observe an on-going interaction, given an image input, and use that information to query the social navigation rules required in that particular context.
  4. We present a context classification pipeline to allow a robot to change its navigation strategy based on the observed social scenario. Socially-Aware Navigation considers social behavior in order to improve navigation around people. Most of the existing research uses different techniques to incorporate social norms into robot path planning for a single context. Methods that work for hallway behavior might not work for approaching people, and so on. We developed a high-level decision-making subsystem, a model-based context classifier, and a multi-objective optimization-based local planner to achieve socially-aware trajectories for autonomously sensed contexts. Using a context classification system, the robot can select social objectives that are later used by Pareto Concavity Elimination Transformation (PaCcET) based local planner to generate safe, comfortable, and socially appropriate trajectories for its environment. This was tested and validated in multiple environments on a Pioneer mobile robot platform; results show that the robot could select and account for social objectives related to navigation autonomously.
  5. As Human-Robot Interaction becomes more sophisticated, measuring the performance of a social robot is crucial to gauging the effectiveness of its behavior. However, social behavior does not necessarily have strict performance metrics that other autonomous behavior can have. Indeed, when considering robot navigation, a socially-appropriate action may be one that is sub-optimal, resulting in longer paths, longer times to get to a goal. Instead, we can rely on subjective assessments of the robot's social performance by a participant in a robot interaction or by a bystander. In this paper, we use the newly-validated Perceived Social Intelligence (PSI) scale to examine the perception of non-humanoid robots in non-verbal social scenarios. We show that there are significant differences between the perceived social intelligence of robots exhibiting SAN behavior compared to one using a traditional navigation planner in scenarios such as waiting in a queue and group behavior.