skip to main content


Title: Advancing Socially-Aware Navigation for Public Spaces
Mobile robots must navigate efficiently, reliably, and appropriately around people when acting in shared social environments. For robots to be accepted in such environments, we explore robot navigation for the social contexts of each setting. Navigating through dynamic environments solely considering a collision-free path has long been solved. In human-robot environments, the challenge is no longer about efficiently navigating from one point to another. Autonomously detecting the context and adapting to an appropriate social navigation strategy is vital for social robots’ long-term applicability in dense human environments. As complex social environments, museums are suitable for studying such behavior as they have many different navigation contexts in a small space.Our prior Socially-Aware Navigation model considered con-text classification, object detection, and pre-defined rules to define navigation behavior in more specific contexts, such as a hallway or queue. This work uses environmental context, object information, and more realistic interaction rules for complex social spaces. In the first part of the project, we convert real-world interactions into algorithmic rules for use in a robot’s navigation system. Moreover, we use context recognition, object detection, and scene data for context-appropriate rule selection. We introduce our methodology of studying social behaviors in complex contexts, different analyses of our text corpus for museums, and the presentation of extracted social norms. Finally, we demonstrate applying some of the rules in scenarios in the simulation environment.  more » « less
Award ID(s):
1719027 2121387 2150394
NSF-PAR ID:
10397328
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
Page Range / eLocation ID:
1015 to 1022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a novel architecture to attain a Unified Planner for Socially-aware Navigation (UP-SAN) and explains its need in Socially Assistive Robotics (SAR) applications. Our approach emphasizes interpersonal distance and how spatial communication can be used to build a unified planner for a human-robot collaborative environment. Socially-Aware Navigation (SAN) is vital to make humans feel comfortable and safe around robots, HRI studies have show that the importance of SAN transcendent safety and comfort. SAN plays a crucial role in perceived intelligence, sociability and social capacity of the robot thereby increasing the acceptance of the robots in public places. Human environments are very dynamic and pose serious social challenges to the robots indented for human interactions. For the robots to cope with the changing dynamics of a situation, there is a need to infer intent and detect changes in the interaction context. SAN has gained immense interest in the social robotics community; to the best of our knowledge, however, there is no planner that can adapt to different interaction contexts spontaneously after autonomously sensing that context. Most of the recent efforts involve social path planning for a single context. In this work, we propose a novel approach for a Unified Planner for SAN that can plan and execute trajectories that are human-friendly for an autonomously sensed interaction context. Our approach augments the navigation stack of Robot Operating System (ROS) utilizing machine learn- ing and optimization tools. We modified the ROS navigation stack using a machine learning-based context classifier and a PaCcET based local planner for us to achieve the goals of UP- SAN. We discuss our preliminary results and concrete plans on putting the pieces together in achieving UP-SAN. 
    more » « less
  2. Robots’ autonomous navigation in public spaces and their social awareness suited to the environmental context is an active investigation in HRI. In this paper, we are presenting a methodology to achieve this goal. While most navigation models focus on objects, context, or human presence in the scene, we will incorporate all three to perceive the environment more accurately. Other than scene perception, the other important aspect of socially aware navigation is the social norms associated with the context. To do so, we have included interviews with museum visitors, volunteers, and staff to gather information about museums and convert the text data to social rules. This effort is currently in progress, we present a framework for future study and analysis of this problem. 
    more » « less
  3. null (Ed.)
    This work presents ideation and preliminary results of using contextual information and information of the objects present in the scene to query applicable social navigation rules for the sensed context. Prior work in socially-Aware Navigation (SAN) shows its importance in human-robot interaction as it improves the interaction quality, safety and comfort of the interacting partner. In this work, we are interested in automatic detection of social rules in SAN and we present three major components of our method, namely: a Convolutional Neural Network-based context classifier that can autonomously perceive contextual information using camera input; a YOLO-based object detection to localize objects with a scene; and a knowledge base of social rules relationships with the concepts to query them using both contextual and detected objects in the scene. Our preliminary results suggest that our approach can observe an on-going interaction, given an image input, and use that information to query the social navigation rules required in that particular context. 
    more » « less
  4. We present a context classification pipeline to allow a robot to change its navigation strategy based on the observed social scenario. Socially-Aware Navigation considers social behavior in order to improve navigation around people. Most of the existing research uses different techniques to incorporate social norms into robot path planning for a single context. Methods that work for hallway behavior might not work for approaching people, and so on. We developed a high-level decision-making subsystem, a model-based context classifier, and a multi-objective optimization-based local planner to achieve socially-aware trajectories for autonomously sensed contexts. Using a context classification system, the robot can select social objectives that are later used by Pareto Concavity Elimination Transformation (PaCcET) based local planner to generate safe, comfortable, and socially appropriate trajectories for its environment. This was tested and validated in multiple environments on a Pioneer mobile robot platform; results show that the robot could select and account for social objectives related to navigation autonomously. 
    more » « less
  5. null (Ed.)
    Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective. 
    more » « less