skip to main content


Title: SSZ-70 borosilicate delamination without sonication: effect of framework topology on olefin epoxidation catalysis
We report a scalable delamination procedure for a SSZ-70-framework layered-zeolite precursor, which for the first time does not involve either sonication or long-chain surfactants. Our approach instead relies on the mild heating of layered zeolite precursor B-SSZ-70(P) in an aqueous solution containing Zn(NO 3 ) 2 and tetrabutylammonium fluoride. Powder X-ray diffraction data are consistent with a loss of long-range order along the z -direction, while 29 Si MAS NMR spectroscopy demonstrates preservation of the zeolite framework crystallinity during delamination. The resulting delaminated material, DZ-2, possesses 1.4-fold higher external surface area relative to the nondelaminated three-dimensional zeolite B-SSZ-70, based on N 2 physisorption data at 77 K. DZ-2 was functionalized with cationic Ti heteroatoms to synthesize Ti-DZ-2 via exchange with framework B. Ti-DZ-2 contains isolated titanium centers in its crystalline framework, as shown by UV-Vis spectroscopy. The generality of the synthetic delamination approach and catalyst synthesis is demonstrated with the synthesis of delaminated material DZ-3, which is derived from layered zeolite precursor ERB-1(P) with MWW framework topology. Upon catalytic testing for the epoxidation of 1-octene with ethylbenzene hydroperoxide as oxidant, under harsh tail-end conditions that deactivate amorphous Ti-silica-based catalysts, Ti-DZ-2 exhibits the highest per-Ti-site activity, selectivity, and stability for 1-octene epoxidation of all catalysts investigated. This testing includes the prior benchmark delaminated zeolite catalyst in this area, Ti-UCB-4, which possesses similar external surface area to Ti-DZ-2 but requires sonication and long-chain surfactants for its synthesis. The synthesis of DZ-2 is the first example of an economical delamination of layered zeolite precursor SSZ-70(P) and opens up new doors to the development of delaminated zeolites as commercial catalysts.  more » « less
Award ID(s):
1746827
NSF-PAR ID:
10113020
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
47
Issue:
42
ISSN:
1477-9226
Page Range / eLocation ID:
15082 to 15090
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid‐state NMR and synchrotron X‐ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al‐SSZ‐70. Through‐covalent‐bond 2D27Al{29Si} J‐correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94 % of the Al atoms are located at the surfaces of the large‐pore interlayer channels of Al‐SSZ‐70, while only 6 % are in the sub‐nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ‐70.

     
    more » « less
  2. Abstract

    The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid‐state NMR and synchrotron X‐ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al‐SSZ‐70. Through‐covalent‐bond 2D27Al{29Si} J‐correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94 % of the Al atoms are located at the surfaces of the large‐pore interlayer channels of Al‐SSZ‐70, while only 6 % are in the sub‐nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ‐70.

     
    more » « less
  3. The current study reports AxA’1-xByB’1-yO3-𝛿 perovskite redox catalysts (RCs) for CO2-splitting and methane partial oxidation (POx) in a cyclic redox scheme. Strontium (Sr) and iron (Fe) were chosen as A and B site elements with A’ being lanthanum (La), samarium (Sm) or yttrium (Y), and B’ being manganese (Mn), or titanium (Ti) to tailor their equilibrium oxygen partial pressures (P_(O_2 ) s) for CO2-splitting and methane partial oxidation. DFT calculations were performed for predictive optimization of the oxide materials whereas experimental investigation confirmed the DFT predicted redox performance. The redox kinetics of the RCs improved significantly by 1 wt.% ruthenium (Ru) impregnation without affecting their redox thermodynamics. Ru impregnated LaFe0.375Mn0.625O3 (A=0, A’=La, B=Fe, and B’=Mn) was the most promising RC in terms of its superior redox performance (CH4/CO2 conversion >90% and CO selectivity~ 95%) at 800oC. Long-term redox testing over Ru impregnated LaFe0.375Mn0.625O3 indicated stable performance during the first 30 cycles following with a ~25% decrease in the activity during the last 70 cycles. Air treatment was effective to reactivate the redox catalyst. Detailed characterizations revealed the underlying mechanism for redox catalyst deactivation and reactivation. This study not only validated a DFT guided mixed oxide design strategy for CO2 utilization but also provides potentially effective approaches to enhance redox kinetics as well as long-term redox catalyst performance. 
    more » « less
  4. Abstract

    Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. We compare three distinct methods of preparing Ga‐ZSM‐5 and reveal direct (single step) synthesis leads to optimal catalysts compared to post‐synthesis methods. Using a combination of state‐of‐the‐art characterization, catalyst testing, and density functional theory calculations, we show that Ga Lewis acid sites strongly favor aromatization. Our findings also suggest Ga(framework)–Ga(extra‐framework) pairings, which can only be achieved in materials prepared by direct synthesis, are the most energetically favorable sites for reaction pathways leading to aromatics. Calculated acid site exchange energies between extra‐framework Ga at framework sites comprised of either Al or Ga reveal a site‐specific preference for stabilizing Lewis acids, which is qualitatively consistent with experimental measurements. These findings indicate the possibility of tailoring Lewis acid siting by the placement of Ga heteroatoms at distinct tetrahedral sites in the zeolite framework, which can have a marked impact on catalyst performance relative to conventional H‐ZSM‐5.

     
    more » « less
  5. Abstract

    Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. We compare three distinct methods of preparing Ga‐ZSM‐5 and reveal direct (single step) synthesis leads to optimal catalysts compared to post‐synthesis methods. Using a combination of state‐of‐the‐art characterization, catalyst testing, and density functional theory calculations, we show that Ga Lewis acid sites strongly favor aromatization. Our findings also suggest Ga(framework)–Ga(extra‐framework) pairings, which can only be achieved in materials prepared by direct synthesis, are the most energetically favorable sites for reaction pathways leading to aromatics. Calculated acid site exchange energies between extra‐framework Ga at framework sites comprised of either Al or Ga reveal a site‐specific preference for stabilizing Lewis acids, which is qualitatively consistent with experimental measurements. These findings indicate the possibility of tailoring Lewis acid siting by the placement of Ga heteroatoms at distinct tetrahedral sites in the zeolite framework, which can have a marked impact on catalyst performance relative to conventional H‐ZSM‐5.

     
    more » « less