skip to main content

Title: SSZ-70 borosilicate delamination without sonication: effect of framework topology on olefin epoxidation catalysis
We report a scalable delamination procedure for a SSZ-70-framework layered-zeolite precursor, which for the first time does not involve either sonication or long-chain surfactants. Our approach instead relies on the mild heating of layered zeolite precursor B-SSZ-70(P) in an aqueous solution containing Zn(NO 3 ) 2 and tetrabutylammonium fluoride. Powder X-ray diffraction data are consistent with a loss of long-range order along the z -direction, while 29 Si MAS NMR spectroscopy demonstrates preservation of the zeolite framework crystallinity during delamination. The resulting delaminated material, DZ-2, possesses 1.4-fold higher external surface area relative to the nondelaminated three-dimensional zeolite B-SSZ-70, based on N 2 physisorption data at 77 K. DZ-2 was functionalized with cationic Ti heteroatoms to synthesize Ti-DZ-2 via exchange with framework B. Ti-DZ-2 contains isolated titanium centers in its crystalline framework, as shown by UV-Vis spectroscopy. The generality of the synthetic delamination approach and catalyst synthesis is demonstrated with the synthesis of delaminated material DZ-3, which is derived from layered zeolite precursor ERB-1(P) with MWW framework topology. Upon catalytic testing for the epoxidation of 1-octene with ethylbenzene hydroperoxide as oxidant, under harsh tail-end conditions that deactivate amorphous Ti-silica-based catalysts, Ti-DZ-2 exhibits the highest per-Ti-site activity, selectivity, and stability for 1-octene more » epoxidation of all catalysts investigated. This testing includes the prior benchmark delaminated zeolite catalyst in this area, Ti-UCB-4, which possesses similar external surface area to Ti-DZ-2 but requires sonication and long-chain surfactants for its synthesis. The synthesis of DZ-2 is the first example of an economical delamination of layered zeolite precursor SSZ-70(P) and opens up new doors to the development of delaminated zeolites as commercial catalysts. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1746827
Publication Date:
NSF-PAR ID:
10113020
Journal Name:
Dalton Transactions
Volume:
47
Issue:
42
Page Range or eLocation-ID:
15082 to 15090
ISSN:
1477-9226
Sponsoring Org:
National Science Foundation
More Like this
  1. The current study reports AxA’1-xByB’1-yO3-𝛿 perovskite redox catalysts (RCs) for CO2-splitting and methane partial oxidation (POx) in a cyclic redox scheme. Strontium (Sr) and iron (Fe) were chosen as A and B site elements with A’ being lanthanum (La), samarium (Sm) or yttrium (Y), and B’ being manganese (Mn), or titanium (Ti) to tailor their equilibrium oxygen partial pressures (P_(O_2 ) s) for CO2-splitting and methane partial oxidation. DFT calculations were performed for predictive optimization of the oxide materials whereas experimental investigation confirmed the DFT predicted redox performance. The redox kinetics of the RCs improved significantly by 1 wt.% ruthenium (Ru) impregnation without affecting their redox thermodynamics. Ru impregnated LaFe0.375Mn0.625O3 (A=0, A’=La, B=Fe, and B’=Mn) was the most promising RC in terms of its superior redox performance (CH4/CO2 conversion >90% and CO selectivity~ 95%) at 800oC. Long-term redox testing over Ru impregnated LaFe0.375Mn0.625O3 indicated stable performance during the first 30 cycles following with a ~25% decrease in the activity during the last 70 cycles. Air treatment was effective to reactivate the redox catalyst. Detailed characterizations revealed the underlying mechanism for redox catalyst deactivation and reactivation. This study not only validated a DFT guided mixed oxide design strategy for CO2 utilizationmore »but also provides potentially effective approaches to enhance redox kinetics as well as long-term redox catalyst performance.« less
  2. Indium on silica, alumina and zeolite chabazite (CHA), with a range of In/Al ratios and Si/Al ratios, have been investigated to understand the effect of the support on indium speciation and its corresponding influence on propane dehydrogenation (PDH). It is found that In 2 O 3 is formed on the external surface of the zeolite crystal after the addition of In(NO 3 ) 3 to H-CHA by incipient wetness impregnation and calcination. Upon reduction in H 2 gas (550 °C), indium displaces the proton in Brønsted acid sites (BASs), forming extra-framework In + species (In-CHA). A stoichiometric ratio of 1.5 of formed H 2 O to consumed H 2 during H 2 pulsed reduction experiments confirms the indium oxidation state of +1. The reduced indium is different from the indium species observed on samples of 10In/SiO 2 , 10In/Al 2 O 3 ( i.e. , 10 wt% indium) and bulk In 2 O 3 , in which In 2 O 3 was reduced to In(0), as determined from the X-ray diffraction patterns of the product, H 2 temperature-programmed reduction (H 2 -TPR) profiles, pulse reactor investigations and in situ transmission FTIR spectroscopy. The BASs in H-CHA facilitate the formation andmore »stabilization of In + cations in extra-framework positions, and prevent the deep reduction of In 2 O 3 to In(0). In + cations in the CHA zeolite can be oxidized with O 2 to form indium oxide species and can be reduced again with H 2 quantitatively. At comparable conversion, In-CHA shows better stability and C 3 H 6 selectivity (∼85%) than In 2 O 3 , 10In/SiO 2 and 10In/Al 2 O 3 , consistent with a low C 3 H 8 dehydrogenation activation energy (94.3 kJ mol −1 ) and high C 3 H 8 cracking activation energy (206 kJ mol −1 ) in the In-CHA catalyst. A high Si/Al ratio in CHA seems beneficial for PDH by decreasing the fraction of CHA cages containing multiple In + cations. Other small-pore zeolite-stabilized metal cation sites could form highly stable and selective catalysts for this and facilitate other alkane dehydrogenation reactions.« less
  3. Platinum group metal-free (PGM-free) catalysts for the oxygen reduction reaction (ORR) with atomically dispersed FeN 4 sites have emerged as a potential replacement for low-PGM catalysts in acidic polymer electrolyte fuel cells (PEFCs). In this work, we carefully tuned the doped Fe content in zeolitic imidazolate framework (ZIF)-8 precursors and achieved complete atomic dispersion of FeN 4 sites, the sole Fe species in the catalyst based on Mößbauer spectroscopy data. The Fe–N–C catalyst with the highest density of active sites achieved respectable ORR activity in rotating disk electrode (RDE) testing with a half-wave potential ( E 1/2 ) of 0.88 ± 0.01 V vs. the reversible hydrogen electrode (RHE) in 0.5 M H 2 SO 4 electrolyte. The activity degradation was found to be more significant when holding the potential at 0.85 V relative to standard potential cycling (0.6–1.0 V) in O 2 saturated acid electrolyte. The post-mortem electron microscopy analysis provides insights into possible catalyst degradation mechanisms associated with Fe–N coordination cleavage and carbon corrosion. High ORR activity was confirmed in fuel cell testing, which also divulged the promising performance of the catalysts at practical PEFC voltages. We conclude that the key factor behind the high ORR activity ofmore »the Fe–N–C catalyst is the optimum Fe content in the ZIF-8 precursor. While too little Fe in the precursors results in an insufficient density of FeN 4 sites, too much Fe leads to the formation of clusters and an ensuing significant loss in catalytic activity due to the loss of atomically dispersed Fe to inactive clusters or even nanoparticles. Advanced electron microscopy was used to obtain insights into the clustering of Fe atoms as a function of the doped Fe content. The Fe content in the precursor also affects other key catalyst properties such as the particle size, porosity, nitrogen-doping level, and carbon microstructure. Thanks to using model catalysts exclusively containing FeN 4 sites, it was possible to directly correlate the ORR activity with the density of FeN 4 species in the catalyst.« less
  4. Sr(Ti 1−x Fe x )O 3−δ (STF) has recently been explored as an oxygen electrode for solid oxide electrochemical cells (SOCs). Model thin film electrode studies show oxygen surface exchange rates that generally improve with increasing Fe content when x < 0.5, and are comparable to the best Co-containing perovskite electrode materials. Recent results on porous electrodes with the specific composition Sr(Ti 0.3 Fe 0.7 )O 3−δ show excellent electrode performance and stability, but other compositions have not been tested. Here we report results for porous electrodes with a range of compositions from x = 0.5 to 0.9. The polarization resistance decreases with increasing Fe content up to x = 0.7, but increases for further increases in x . This results from the interaction of two effects – the oxygen solid state diffusion coefficient increases with increasing x , but the electrode surface area and surface oxygen exchange rate decrease due to increased sinterability and Sr surface segregation for the Fe-rich compositions. Symmetric cells showed no degradation during 1000 h life tests at 700 °C even at a current density of 1.5 A cm −2 , showing that all the STF electrode compositions worked stably in both fuel cell modemore »and electrolysis modes. The excellent stability may be explained by X-ray Photoelectron Spectroscopy (XPS) results showing that the amount of surface segregated Sr did not change during the long-term testing, and by relatively low polarization resistances that help avoid electrode delamination.« less
  5. Zeolites are generally defined as three-dimensional (3D) crystalline microporous aluminosilicates in which silicon (Si4+) and aluminum (Al3+) are coordinated tetrahedrally with oxygen to form large negative lattices and consequent Brønsted acidity. Two-dimensional (2D) zeolite nanosheets with single-unit-cell or near single-unit-cell thickness (~2–3 nm) represent an emerging type of zeolite material. The extremely thin slices of crystals in 2D zeolites produce high external surface areas (up to 50% of total surface area compared to ~2% in micron-sized 3D zeolite) and expose most of their active sites on external surfaces, enabling beneficial effects for the adsorption and reaction performance for processing bulky molecules. This review summarizes the structural properties of 2D layered precursors and 2D zeolite derivatives, as well as the acidity properties of 2D zeolite derivative structures, especially in connection to their 3D conventional zeolite analogues’ structural and compositional properties. The timeline of the synthesis and recognition of 2D zeolites, as well as the structure and composition properties of each 2D zeolite, are discussed initially. The qualitative and quantitative measurements on the acid site type, strength, and accessibility of 2D zeolites are then presented. Future research and development directions to advance understanding of 2D zeolite materials are also discussed.