skip to main content


Title: SSZ-70 borosilicate delamination without sonication: effect of framework topology on olefin epoxidation catalysis
We report a scalable delamination procedure for a SSZ-70-framework layered-zeolite precursor, which for the first time does not involve either sonication or long-chain surfactants. Our approach instead relies on the mild heating of layered zeolite precursor B-SSZ-70(P) in an aqueous solution containing Zn(NO 3 ) 2 and tetrabutylammonium fluoride. Powder X-ray diffraction data are consistent with a loss of long-range order along the z -direction, while 29 Si MAS NMR spectroscopy demonstrates preservation of the zeolite framework crystallinity during delamination. The resulting delaminated material, DZ-2, possesses 1.4-fold higher external surface area relative to the nondelaminated three-dimensional zeolite B-SSZ-70, based on N 2 physisorption data at 77 K. DZ-2 was functionalized with cationic Ti heteroatoms to synthesize Ti-DZ-2 via exchange with framework B. Ti-DZ-2 contains isolated titanium centers in its crystalline framework, as shown by UV-Vis spectroscopy. The generality of the synthetic delamination approach and catalyst synthesis is demonstrated with the synthesis of delaminated material DZ-3, which is derived from layered zeolite precursor ERB-1(P) with MWW framework topology. Upon catalytic testing for the epoxidation of 1-octene with ethylbenzene hydroperoxide as oxidant, under harsh tail-end conditions that deactivate amorphous Ti-silica-based catalysts, Ti-DZ-2 exhibits the highest per-Ti-site activity, selectivity, and stability for 1-octene epoxidation of all catalysts investigated. This testing includes the prior benchmark delaminated zeolite catalyst in this area, Ti-UCB-4, which possesses similar external surface area to Ti-DZ-2 but requires sonication and long-chain surfactants for its synthesis. The synthesis of DZ-2 is the first example of an economical delamination of layered zeolite precursor SSZ-70(P) and opens up new doors to the development of delaminated zeolites as commercial catalysts.  more » « less
Award ID(s):
1746827
NSF-PAR ID:
10113020
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
47
Issue:
42
ISSN:
1477-9226
Page Range / eLocation ID:
15082 to 15090
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid‐state NMR and synchrotron X‐ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al‐SSZ‐70. Through‐covalent‐bond 2D27Al{29Si} J‐correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94 % of the Al atoms are located at the surfaces of the large‐pore interlayer channels of Al‐SSZ‐70, while only 6 % are in the sub‐nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ‐70.

     
    more » « less
  2. Abstract

    The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid‐state NMR and synchrotron X‐ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al‐SSZ‐70. Through‐covalent‐bond 2D27Al{29Si} J‐correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94 % of the Al atoms are located at the surfaces of the large‐pore interlayer channels of Al‐SSZ‐70, while only 6 % are in the sub‐nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ‐70.

     
    more » « less
  3. Thein situHF acid etching of Ti3AlC2yielded multilayered Ti3C2. Sonication delaminated nanosheets, suspended in DI water, post rheological optimization 3D printed using DIW platform to produce conductive patterns of MXene.

     
    more » « less
  4. The Sharpless reaction is an enantioselective epoxidation of prochiral allylic alcohols that employs a Ti(IV) catalyst formed from titanium tetra(isopropoxide), Ti(O-i-Pr)4, diethyl tartrate (DET) and the oxidizing agent tert-butyl hydroperoxide. The M06-2X DFT functional with the 6-311+G(d,p) basis set has been employed to model the structures and energetics of the Sharpless epoxidation reaction. The monomeric tetracoordinate titanium(IV) diethyltartrate is thermodynamically strongly favored to dimerize, producing pentacoordinate catalyst, [Ti(DET)(O-i-Pr)2]2, that is a more reactive chiral epoxidation catalyst. The rapid ligand exchange reactions needed to generate the “loaded” catalyst and to repeat the overall catalytic cycle have been examined and are found to have activation energies that are much lower than the epoxidation barriers. The transition structures and activation energies for the enantioselective epoxidation of allyl alcohol, trans-methyl-allyl alcohol and trans-tert-butyl-allyl alcohol with the “loaded” Sharpless catalyst, [Ti2(DET)2 (O-i-Pr)2-(OAllyl)-(OOt-Bu)], are presented. The effect of the C=O•••Ti interactions on the activation energies and the significance of the O-C-C=C dihedral angle on the enantioselectivity of the epoxidation reaction are discussed. 
    more » « less
  5. Abstract

    The high‐silica zeolite SSZ‐27 was synthesized using one of the isomers of the organic structure‐directing agent that is known to produce the large‐pore zeolite SSZ‐26 (CON). The structure of the as‐synthesized form was solved using multi‐crystal electron diffraction data. Data were collected on eighteen crystals, and to obtain a high‐quality and complete data set for structure refinement, hierarchical cluster analysis was employed to select the data sets most suitable for merging. The framework structure of SSZ‐27 can be described as a combination of two types of cavities, one of which is shaped like a heart. The cavities are connected through shared 8‐ring windows to create straight channels that are linked together in pairs to form a one‐dimensional channel system. Once the framework structure was known, molecular modelling was used to find the best fitting isomer, and this, in turn, was isolated to improve the synthesis conditions for SSZ‐27.

     
    more » « less