skip to main content


Title: A Radio Frequency Comb Filter for Sparse Fourier Transform-Based Spectrum Sensing
This work demonstrates a passive low-insertion-loss (IL)RF filter with periodic passbands and capable of sparsifying the spectrum from 238 to 526 MHz for sparse Fourier transform (SFT)based spectrum sensing. The demonstrated periodic filter employs LiNbO 3 lateral overtone bulk acoustic resonators (LOBARs)with high-quality factors (Qs), large electromechanical coupling (k t 2 ), and multiple equally spaced resonances in a ladder topology. The fabricated LOBARs show k t 2 larger than 1.5% and figure of merits (k 2 Q) more than 30 for over 10 tones simultaneously and are both among the highest demonstrated in overmoded resonators. The multi-band filter centered at 370 MHz have then been obtained with a passband span of 291 MHz, a spectral spacing of 22 MHz, an IL of 2 dB, FBWs around 0.6%, and a sparsification ratio between 7 and 15. An out-of-band rejection around 25 dB has also been achieved for more than 14 bands. The great performance demonstrated by the RF filter with 14 useable periodic passbands will serve to enable future sparse Fourier transform-based spectrum sensing.  more » « less
Award ID(s):
1824320
NSF-PAR ID:
10113050
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE International Ultrasonics Symposium (IUS)
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reports on quasi-elliptic dual-band bandpass filters (BPFs) that were designed for the Filter Student Design Competition of the 2019 European Microwave Week. The proposed lumped-element (LE) BPF concept is based on two dual-band transversal cells and one multi-resonant cell that allow the realization of symmetric and asymmetric dual-band transfer functions shaped by six poles and five transmission zeros. A compact implementation scheme based on LE series resonators is proposed for size compactness and wide spurious free out-of-band response. For proof-of-concept demonstration purposes, a dual-band LE prototype with two passbands centered 1 and 1.5 GHz was designed, manufactured, and measured. It exhibited the following radio frequency measured performance characteristics. Passbands centered at 1.02 and 1.45 GHz, minimum insertion loss levels of 2.0 and 2.7 dB, and bandwidth of 146 and 105 MHz, respectively, for the first and the second passband, and out-of-band rejection >30 dB between 0 and 894 MHz, 1.17–1.34 GHz, and 1.72–6.9 GHz. 
    more » « less
  2. This theoretical modeling and simulation paper presents designs and projected performance of an on-chip digital Fourier transform spectrometer using a thermo-optical (TO) Michelson grating interferometer operating at∼1550 and 2000 nm for silicon-on-insulator and for germanium-on-silicon technological platforms, respectively. The Michelson interferometer arms consist of two unbalanced tunable optical delay lines operating in the reflection mode. They are comprised of a cascade connection of waveguide Bragg grating resonators (WBGRs) separated by a piece of straight waveguide with lengths designed according to the spectrometer resolution requirements. The length of eachWBGRis chosen according to the Butterworth filter technique to provide one resonant spectral profile with a bandwidth twice that of the spectrometer bandwidth. A selectable optical path difference (OPD) between the arms is obtained by shifting the notch in the reflectivity spectrum along the wavelength axis by means of a low-power TO heater stripe atop the WBGR, inducing an OPD that depends on the line position of the WBGR affected by TO switching.We examined the device performances in terms of signal recostruction in the radio-frequency (RF) spectrum analysis application at 1 GHz and at 1.5 GHz of spectrometer resolution. The investigation demonstrated that high-quality spectrum reconstruction is obtained for both Lorentzian and arbitrary input signals with a bandwidth up to 40 GHz. We also show that spectrum reconstruction of 100–200 GHz RF band input signals is feasible in the Ge-on-Si chips. 
    more » « less
  3. Microfluidically reconfigurable radio-frequency (RF) devices in general have been found attractive for low-loss, wide-frequency tunability and high-power-handling capabilities. Recently, integrated actuation of the microfluidically reconfigurable devices has been proposed for compact mm-wave device applications. This article for the first time introduces microfluidically reconfigurable frequency- and/or bandwidthtunable bandpass filters (BPFs) operated at the mm-wave band with integrated actuation. The BPFs consist of coupled hairpin resonators. Frequency tuning is achieved by capacitively loading the resonators. Bandwidth tuning is achieved by creating varying capacitive loading among the resonators to control the interresonator couplings. The capacitive loading mechanisms are realized using the selectively metallized plates (SMPs) that can be repositioned within the microfluidic channels. The microfluidic channels are located directly above the stationary metallizations of the filter. Piezoelectric bending actuators placed under the filter’s ground plane provide the SMP motion capability. The BPFs perform with the worst-case insertion loss of 3.1 dB. Frequency-tuning capable filters operate within 28–38-GHz band. Fractional bandwidth tunability varies from 7.8% to 16.7% at 38 GHz and 7.6% to 12.5% at 28 GHz for the filter that is capable of both tuning mechanisms. The filters are characterized to handle 5 W of the continuous RF power without needing thick ground planes or heat sinks. In addition, the frequency-tuning speed is characterized to be 285 MHz/ms. 
    more » « less
  4. Abstract

    This work is on the design, fabrication and characterization of a hexagonal ferrite band-pass filter that can be tuned either with a magnetic field or an electric field. The filter operation is based on a straight-edge Y-type hexagonal ferrite resonator symmetrically coupled to the input and output microstrip transmission lines. The Zn2Yfilter demonstrated magnetic field tunability in the 8–12 GHz frequency range by applying an in-plane bias magnetic fieldH0provided by a built-in permanent magnet. The insertion loss and 3 dB bandwidth within this band were 8.6 ± 0.4 dB and 350 ± 40 MHz, respectively. The electric fieldEtunability of the pass-band of the device was facilitated by the nonlinear magnetoelectric effect (NLME) in the ferrite. TheE-tuning of the center frequency of the filter by (1150 ± 90) MHz was obtained for an input DC electric power of 200 mW. With efforts directed at a significant reduction in the insertion loss, the compact and power efficient magnetic and electric field tunable Zn2Y band-pass filter has the potential for use in novel reconfigurable RF/microwave devices and communication systems.

     
    more » « less
  5. Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µm resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3and 73.8 dB·Hz2/3third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.

     
    more » « less