skip to main content


Title: Optimal Meal Time after Bolusing for Type 1 Diabetes Patients under Meal Uncertainties
The focus of this paper is on the characterization of the uncertainties in the evolving states of a diabetic model, to permit a study of the impact of the time interval between insulin bolusing and meal initiation on hypo- and hyperglycemic events. A polynomial chaos based approach is used to characterize the independent uncertainties in the initial condition and meal size. Galerkin projection of the resulting equations reduce the stochastic differential equations to a set of deterministic equations. This forms the framework to optimize for the post bolusing time to initiate the meal. Two cost functions are considered which correspond to the postprandial hypoand hyperglycemic excursions of the blood glucose. Numerical results from the minimal Bergman model suggest a 13 and 14 minute interval between bolusing and the initiation of the meal.  more » « less
Award ID(s):
1537210
NSF-PAR ID:
10113134
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2017 American Control Conference (ACC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The focus of this paper is on the development of an open loop controller for type 1 diabetic patients which is robust to meal and initial condition uncertainties in the presence of hypoand hyperglycemic constraints. Bernstein polynomials are used to parametrize the evolving uncertain blood-glucose. The unique bounding properties of these polynomials are then used to enforce the desired glycemic constraints. A convex optimization problem is posed in the perturbation space of the model and is solved repeatedly to sequentially converge on a sub-optimal solution. The proposed approach is demonstrated on the classic Bergman model for Type 1 diabetic patients. 
    more » « less
  2. The emerging prevalence of electric vehicles (EVs) in shared mobility services has led to a groundbreaking trend for decarbonizing the shared mobility sector. However, it is still unclear how to maximize the efficiency of EVs to reduce greenhouse gas (GHG) emissions while maintaining high service quality, particularly considering the ongoing transition towards a fully electrified service fleet. In this paper, focusing on meal delivery, we proposed an eco-friendly on-demand meal delivery (ODMD) system to maximize the utilities of EVs to mitigate GHG emissions and maintain low operational cost and delay cost. The main feature of our system is that its fleet consists of electric and gasoline vehicles mirroring the evolving electrification trend in the shared delivery sector. A rolling horizon framework integrated with the adaptive large neighborhood search (RHALNS) algorithm was proposed to efficiently solve the meal order dispatching and routing problem with the mixed fleet. Three delivery policies were explored in the numerical study. Experiment results demonstrated that it is necessary for online meal delivery platforms to actively collect information of electric vehicles and take initiative to employ an eco-friendly delivery policy. 
    more » « less
  3. Background

    Chronic diseases such as heart disease, stroke, diabetes, and hypertension are major global health challenges. Healthy eating can help people with chronic diseases manage their condition and prevent complications. However, making healthy meal plans is not easy, as it requires the consideration of various factors such as health concerns, nutritional requirements, tastes, economic status, and time limits. Therefore, there is a need for effective, affordable, and personalized meal planning that can assist people in choosing food that suits their individual needs and preferences.

    Objective

    This study aimed to design an artificial intelligence (AI)–powered meal planner that can generate personalized healthy meal plans based on the user’s specific health conditions, personal preferences, and status.

    Methods

    We proposed a system that integrates semantic reasoning, fuzzy logic, heuristic search, and multicriteria analysis to produce flexible, optimized meal plans based on the user’s health concerns, nutrition needs, as well as food restrictions or constraints, along with other personal preferences. Specifically, we constructed an ontology-based knowledge base to model knowledge about food and nutrition. We defined semantic rules to represent dietary guidelines for different health concerns and built a fuzzy membership of food nutrition based on the experience of experts to handle vague and uncertain nutritional data. We applied a semantic rule-based filtering mechanism to filter out food that violate mandatory health guidelines and constraints, such as allergies and religion. We designed a novel, heuristic search method that identifies the best meals among several candidates and evaluates them based on their fuzzy nutritional score. To select nutritious meals that also satisfy the user’s other preferences, we proposed a multicriteria decision-making approach.

    Results

    We implemented a mobile app prototype system and evaluated its effectiveness through a use case study and user study. The results showed that the system generated healthy and personalized meal plans that considered the user’s health concerns, optimized nutrition values, respected dietary restrictions and constraints, and met the user’s preferences. The users were generally satisfied with the system and its features.

    Conclusions

    We designed an AI-powered meal planner that helps people create healthy and personalized meal plans based on their health conditions, preferences, and status. Our system uses multiple techniques to create optimized meal plans that consider multiple factors that affect food choice. Our evaluation tests confirmed the usability and feasibility of the proposed system. However, some limitations such as the lack of dynamic and real-time updates should be addressed in future studies. This study contributes to the development of AI-powered personalized meal planning systems that can support people’s health and nutrition goals.

     
    more » « less
  4. Meal delivery has become increasingly popular in past years and of great importance in past months during the COVID-19 pandemic. Sustaining such services depends on maintaining provider profitability and reduced cost to consumers while continuing to support autonomy and independence for customers, restaurants, and delivery drivers (here crowdsourced drivers). This paper investigates the possible enactment of curbside regulations in the U.S. that limit the number of drivers simultaneously waiting at restaurants to pick up meals for delivery on both public safety and delivery efficiency. Curbside regulations would aim to increase safety by enabling social distancing between delivery personnel at pickup locations and have a secondary benefit of improving local traffic flows, which are sometimes impeded in busier, urban locations. Curbside space limits are studied in relation to their impacts on consumer-related performance measures: freshness of the food on delivery and click-to-door time. This investigation is enabled through a proposed hybrid discrete-event and time-advanced simulation platform that replicates meal delivery service calls and pickup and delivery operations across a region built on data from a leading meal delivery company. Embedded within the simulation is an integer program that optimally assigns orders to drivers in a dynamically changing environment. Order assignments are constrained by imposed curbside capacity limits at the restaurants, and potential efficiencies and curbside violation reductions from bundling orders are assessed. Results of analyses from numerical experiments provide insights to state and local communities in designing curbside restrictions that reduce curbside crowding yet enable delivery companies to retain their profitability.

     
    more » « less
  5. Eating, central to human existence, is influenced by a myriad of factors, including nutrition, health, personal taste, cultural background, and flavor preferences. The challenge of devising personalized meal plans that effectively encompass these dimensions is formidable. A crucial shortfall in many existing meal-planning systems is poor user adherence, often stemming from a disconnect between the plan and the user’s lifestyle, preferences, or unseen eating patterns. Our study introduces a pioneering algorithm, CFRL, which melds reinforcement learning (RL) with collaborative filtering (CF) in a unique synergy. This algorithm not only addresses nutritional and health considerations but also dynamically adapts to and uncovers latent user eating habits, thereby significantly enhancing user acceptance and adherence. CFRL utilizes Markov decision processes (MDPs) for interactive meal recommendations and incorporates a CF-based MDP framework to align with broader user preferences, translated into a shared latent vector space. Central to CFRL is its innovative reward-shaping mechanism, rooted in multi-criteria decision-making that includes user ratings, preferences, and nutritional data. This results in versatile, user-specific meal plans. Our comparative analysis with four baseline methods showcases CFRL’s superior performance in key metrics like user satisfaction and nutritional adequacy. This research underscores the effectiveness of combining RL and CF in personalized meal planning, marking a substantial advancement over traditional approaches.

     
    more » « less