skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ASP-based Discovery of Semi-Markovian Causal Models under Weaker Assumptions
In recent years the possibility of relaxing the so- called Faithfulness assumption in automated causal discovery has been investigated. The investiga- tion showed (1) that the Faithfulness assumption can be weakened in various ways that in an impor- tant sense preserve its power, and (2) that weak- ening of Faithfulness may help to speed up meth- ods based on Answer Set Programming. However, this line of work has so far only considered the dis- covery of causal models without latent variables. In this paper, we study weakenings of Faithfulness for constraint-based discovery of semi-Markovian causal models, which accommodate the possibility of latent variables, and show that both (1) and (2) remain the case in this more realistic setting.  more » « less
Award ID(s):
1845958
PAR ID:
10113171
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019;
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. S. Koyejo; S. Mohamed; A. Agarwal; D. Belgrave; K. Cho, A. Oh (Ed.)
    We focus on causal discovery in the presence of measurement error in linear systems where the mixing matrix, i.e., the matrix indicating the independent exogenous noise terms pertaining to the observed variables, is identified up to permutation and scaling of the columns. We demonstrate a somewhat surprising connection between this problem and causal discovery in the presence of unobserved parentless causes, in the sense that there is a mapping, given by the mixing matrix, between the underlying models to be inferred in these problems. Consequently, any identifiability result based on the mixing matrix for one model translates to an identifiability result for the other model. We characterize to what extent the causal models can be identified under a two-part faithfulness assumption. Under only the first part of the assumption (corresponding to the conventional definition of faithfulness), the structure can be learned up to the causal ordering among an ordered grouping of the variables but not all the edges across the groups can be identified. We further show that if both parts of the faithfulness assumption are imposed, the structure can be learned up to a more refined ordered grouping. As a result of this refinement, for the latent variable model with unobserved parentless causes, the structure can be identified. Based on our theoretical results, we propose causal structure learning methods for both models, and evaluate their performance on synthetic data. 
    more » « less
  2. Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang; Sabato, Sivan (Ed.)
    Traditional causal discovery methods mainly focus on estimating causal relations among measured variables, but in many real-world problems, such as questionnaire-based psychometric studies, measured variables are generated by latent variables that are causally related. Accordingly, this paper investigates the problem of discovering the hidden causal variables and estimating the causal structure, including both the causal relations among latent variables and those between latent and measured variables. We relax the frequently-used measurement assumption and allow the children of latent variables to be latent as well, and hence deal with a specific type of latent hierarchical causal structure. In particular, we define a minimal latent hierarchical structure and show that for linear non-Gaussian models with the minimal latent hierarchical structure, the whole structure is identifiable from only the measured variables. Moreover, we develop a principled method to identify the structure by testing for Generalized Independent Noise (GIN) conditions in specific ways. Experimental results on both synthetic and real-world data show the effectiveness of the proposed approach. 
    more » « less
  3. We establish conditions under which latent causal graphs are nonparametrically identifiable and can be reconstructed from unknown interventions in the latent space. Our primary focus is the identification of the latent structure in a measurement model, i.e. causal graphical models where dependence between observed variables is insignificant compared to dependence between latent representations, without making parametric assumptions such as linearity or Gaussianity. Moreover, we do not assume the number of hidden variables is known, and we show that at most one unknown intervention per hidden variable is needed. This extends a recent line of work on learning causal representations from observations and interventions. The proofs are constructive and introduce two new graphical concepts -- imaginary subsets and isolated edges -- that may be useful in their own right. As a matter of independent interest, the proofs also involve a novel characterization of the limits of edge orientations within the equivalence class of DAGs induced by unknown interventions. Experiments confirm that the latent graph can be recovered from data using our theoretical results. These are the first results to characterize the conditions under which causal representations are identifiable without making any parametric assumptions in a general setting with unknown interventions and without faithfulness. 
    more » « less
  4. Learning causal structure from observational data has attracted much attention,and it is notoriously challenging to find the underlying structure in the presenceof confounders (hidden direct common causes of two variables). In this paper,by properly leveraging the non-Gaussianity of the data, we propose to estimatethe structure over latent variables with the so-called Triad constraints: we design a form of "pseudo-residual" from three variables, and show that when causal relations are linear and noise terms are non-Gaussian, the causal direction between the latent variables for the three observed variables is identifiable by checking a certain kind of independence relationship. In other words, the Triad constraints help us to locate latent confounders and determine the causal direction between them. This goes far beyond the Tetrad constraints and reveals more information about the underlying structure from non-Gaussian data. Finally, based on the Triad constraints, we develop a two-step algorithm to learn the causal structure corresponding to measurement models. Experimental results on both synthetic and real data demonstrate the effectiveness and reliability of our method. 
    more » « less
  5. In constraint-based causal discovery, the existing algorithms systematically use a series of conditional independence (CI) relations observed in the data to recover an equivalence class of causal graphs in the large sample limit. One limitation of these algorithms is that CI tests lose statistical power as conditioning set size increases with finite samples. Recent research proposes to limit the conditioning set size for robust causal discovery. However, the existing algorithms require exhaustive testing of all CI relations with conditioning set sizes up to a certain integer k. This becomes problematic in practice when variables with large support are present, as it makes CI tests less reliable due to near-deterministic relationships, thereby violating the faithfulness assumption. To address this issue, we propose a causal discovery algorithm that only uses CI tests where the conditioning sets are restricted to a given set of conditioning sets including the empty set C. We call such set of CI relations IC conditionally closed. We define the notion of C-Markov equivalence: two causal graphs are C-Markov equivalent if they entail the same set of CI constraints from IC. We propose a graphical representation of C-Markov equivalence and characterize such equivalence between two causal graphs. Our proposed algorithm called the C-PC algorithm is sound for learning the C-Markov equivalence class. We demonstrate the utility of the proposed algorithm via synthetic and real-world experiments in scenarios where variables with large support or high correlation are present in the data. Our source code is available online at github.com/kenneth-lee-ch/cpc. 
    more » « less