skip to main content

Title: Triad Constraints for Learning Causal Structure of Latent Variables
Learning causal structure from observational data has attracted much attention,and it is notoriously challenging to find the underlying structure in the presenceof confounders (hidden direct common causes of two variables). In this paper,by properly leveraging the non-Gaussianity of the data, we propose to estimatethe structure over latent variables with the so-called Triad constraints: we design a form of "pseudo-residual" from three variables, and show that when causal relations are linear and noise terms are non-Gaussian, the causal direction between the latent variables for the three observed variables is identifiable by checking a certain kind of independence relationship. In other words, the Triad constraints help us to locate latent confounders and determine the causal direction between them. This goes far beyond the Tetrad constraints and reveals more information about the underlying structure from non-Gaussian data. Finally, based on the Triad constraints, we develop a two-step algorithm to learn the causal structure corresponding to measurement models. Experimental results on both synthetic and real data demonstrate the effectiveness and reliability of our method.
Award ID(s):
Publication Date:
Journal Name:
Advances in neural information processing systems
Sponsoring Org:
National Science Foundation
More Like this
  1. Chaudhuri, Kamalika ; Jegelka, Stefanie ; Song, Le ; Szepesvari, Csaba ; Niu, Gang ; Sabato, Sivan (Ed.)
    Traditional causal discovery methods mainly focus on estimating causal relations among measured variables, but in many real-world problems, such as questionnaire-based psychometric studies, measured variables are generated by latent variables that are causally related. Accordingly, this paper investigates the problem of discovering the hidden causal variables and estimating the causal structure, including both the causal relations among latent variables and those between latent and measured variables. We relax the frequently-used measurement assumption and allow the children of latent variables to be latent as well, and hence deal with a specific type of latent hierarchical causal structure. In particular, we define a minimal latent hierarchical structure and show that for linear non-Gaussian models with the minimal latent hierarchical structure, the whole structure is identifiable from only the measured variables. Moreover, we develop a principled method to identify the structure by testing for Generalized Independent Noise (GIN) conditions in specific ways. Experimental results on both synthetic and real-world data show the effectiveness of the proposed approach.
  2. This paper investigates the problem of selecting instrumental variables relative to a target causal influence X→Y from observational data generated by linear non-Gaussian acyclic causal models in the presence of unmeasured confounders. We propose a necessary condition for detecting variables that cannot serve as instrumental variables. Unlike many existing conditions for continuous variables, i.e., that at least two or more valid instrumental variables are present in the system, our condition is designed with a single instrumental variable. We then characterize the graphical implications of our condition in linear non-Gaussian acyclic causal models. Given that the existing graphical criteria for the instrument validity are not directly testable given observational data, we further show whether and how such graphical criteria can be checked by exploiting our condition. Finally, we develop a method to select the set of candidate instrumental variables given observational data. Experimental results on both synthetic and real-world data show the effectiveness of the proposed method.
  3. The main purpose of this paper is to illustrate the application of causal inference method to administrative data and the challenges of such application. We illustrate by applying Bayesian networks method to 311 data from Miami-Dade County, Florida (USA). The 311 centers provide non-emergency services to residents. The 311 data are large and granular. We aim to explore the equity issues and biases that might exist in this particular type of service requests. As a case study, the relationship between population characteristics (independent variables) and request volume and completion time (dependent variables) is examined to identify the disparities, if any, from the observational data. The empirical analysis shows that there are no biases in services provided to any specific demographic, socioeconomic, or geographical groups. However, the administrative data do have various challenges for inferring causality due to missing or impure data, inadequacy, and latent confounders. The precautions of applying causal techniques to analyzing administrative data like 311 are discussed.
  4. We consider the problem of estimating the structure of an undirected weighted sparse graphical model of multivariate data under the assumption that the underlying distribution is multivariate totally positive of order 2, or equivalently, all partial correlations are non-negative. Total positivity holds in several applications. The problem of Gaussian graphical model learning has been widely studied without the total positivity assumption where the problem can be formulated as estimation of the sparse precision matrix that encodes conditional dependence between random variables associated with the graph nodes. An approach that imposes total positivity is to assume that the precision matrix obeys the Laplacian constraints which include constraining the off-diagonal elements of the precision matrix to be non-positive. In this paper we investigate modifications to widely used penalized log-likelihood approaches to enforce total positivity but not the Laplacian structure. An alternating direction method of multipliers (ADMM) algorithm is presented for constrained optimization under total positivity and lasso as well as adaptive lasso penalties. Numerical results based on synthetic data show that the proposed constrained adaptive lasso approach significantly outperforms existing Laplacian-based approaches, both statistical and smoothness-based non-statistical.
  5. Many applications of computational social science aim to infer causal conclusions from non-experimental data. Such observational data often contains confounders, variables that influence both potential causes and potential effects. Unmeasured or latent confounders can bias causal estimates, and this has motivated interest in measuring potential confounders from observed text. For example, an individual’s entire history of social media posts or the content of a news article could provide a rich measurement of multiple confounders.Yet, methods and applications for this problem are scattered across different communities and evaluation practices are inconsistent.This review is the first to gather and categorize these examples and provide a guide to data-processing and evaluation decisions. Despite increased attention on adjusting for confounding using text, there are still many open problems, which we highlight in this paper.