skip to main content


Title: "Occupational Therapy is Making": Clinical Rapid Prototyping and Digital Fabrication
Abstract: Consumer-fabrication technologies potentially improve the effectiveness and adoption of assistive technology (AT) by engaging AT users in AT creation. However, little is known about the role of clinicians in this revolution. We investigate clinical AT fabrication by working as expert fabricators for clinicians over a four-month period. We observed and co-designed AT with four occupational therapists at two clinics: a free clinic for uninsured clients, and a Veteran's Affairs Hospital. We find that existing fabrication processes, particularly with respect to rapid prototyping, do not align with clinical practice and itsdo-no-harm ethos. We recommend software solutions that would integrate into client care by: amplifying clinicians' expertise, revealing appropriate fabrication opportunities, and supporting adaptable fabrication.  more » « less
Award ID(s):
1718651
PAR ID:
10113183
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
Paper 314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Computational methods from reinforcement learning have shown promise in inferring treatment strategies for hypotension management and other clinical decision-making challenges. Unfortunately, the resulting models are often difficult for clinicians to interpret, making clinical inspection and validation of these computationally derived strategies challenging in advance of deployment. In this work, we develop a general framework for identifying succinct sets of clinical contexts in which clinicians make very different treatment choices, tracing the effects of those choices, and inferring a set of recommendations for those specific contexts. By focusing on these few key decision points, our framework produces succinct, interpretable treatment strategies that can each be easily visualized and verified by clinical experts. This interrogation process allows clinicians to leverage the model’s use of historical data in tandem with their own expertise to determine which recommendations are worth investigating further e.g. at the bedside. We demonstrate the value of this approach via application to hypotension management in the ICU, an area with critical implications for patient outcomes that lacks data-driven individualized treatment strategies; that said, our framework has broad implications on how to use computational methods to assist with decision-making challenges on a wide range of clinical domains. 
    more » « less
  2. Clinical practice guidelines, care pathways, and protocols are designed to support evidence-based practices for clinicians; however, their adoption remains a challenge. We set out to investigate why clinicians deviate from the “Wake Up and Breathe” protocol, an evidence-based guideline for liberating patients from mechanical ventilation in the intensive care unit (ICU). We conducted over 40 hours of direct observations of live clinical workflows, 17 interviews with frontline care providers, and 4 co-design workshops at three different medical intensive care units. Our findings indicate that unlike prior literature suggests, disagreement with the protocol is not a substantial barrier to adoption. Instead, the uncertainty surrounding the application of the protocol for individual patients leads clinicians to deprioritize adoption in favor of tasks where they have high certainty. Reflecting on these insights, we identify opportunities for technical systems to help clinicians in effectively executing the protocol and discuss future directions for HCI research to support the integration of protocols into clinical practice in complex, team-based healthcare settings. 
    more » « less
  3. Background

    Clinical care in modern intensive care units (ICUs) combines multidisciplinary expertise and a complex array of technologies. These technologies have clearly advanced the ability of clinicians to do more for patients, yet so much equipment also presents the possibility for cognitive overload.

    Purpose

    The aim of this study was to investigate clinicians’ experiences with and perceptions of technology in ICUs.

    Methodology/Approach

    We analyzed qualitative data from 30 interviews with ICU clinicians and frontline managers within four ICUs.

    Results

    Our interviews identified three main challenges associated with technology in the ICU: (a) too many technologies and too much data; (b) inconsistent and inaccurate technologies; and (c) not enough integration among technologies, alignment with clinical workflows, and support for clinician identities. To address these challenges, interviewees highlighted mitigation strategies to address both social and technical systems and to achieve joint optimization.

    Conclusion

    When new technologies are added to the ICU, they have potential both to improve and to disrupt patient care. To successfully implement technologies in the ICU, clinicians’ perspectives are crucial. Understanding clinicians’ perspectives can help limit the disruptive effects of new technologies, so clinicians can focus their time and attention on providing care to patients.

    Practice Implications

    As technology and data continue to play an increasingly important role in ICU care, everyone involved in the design, development, approval, implementation, and use of technology should work together to apply a sociotechnical systems approach to reduce possible negative effects on clinical care for critically ill patients.

     
    more » « less
  4. The large amount of time clinicians spend sifting through patient notes and documenting in electronic health records (EHRs) is a leading cause of clinician burnout. By proactively and dynamically retrieving relevant notes during the documentation process, we can reduce the effort required to find relevant patient history. In this work, we conceptualize the use of EHR audit logs for machine learning as a source of supervision of note relevance in a specific clinical context, at a particular point in time. Our evaluation focuses on the dynamic retrieval in the emergency department, a high acuity setting with unique patterns of information retrieval and note writing. We show that our methods can achieve an AUC of 0.963 for predicting which notes will be read in an individual note writing session. We additionally conduct a user study with several clinicians and find that our framework can help clinicians retrieve relevant information more efficiently. Demonstrating that our framework and methods can perform well in this demanding setting is a promising proof of concept that they will translate to other clinical settings and data modalities (e.g., labs, medications, imaging). 
    more » « less
  5. Patient-generated data (PGD) show great promise for informing the delivery of personalized and patient-centered care. However, patients' data tracking does not automatically lead to data sharing and discussion with clinicians, which can make it difficult to utilize and derive optimal benefit from PGD. In this paper, we investigate whether and how patients share their PGD with clinicians and the types of challenges that arise within this context. We describe patients' immediate experiences of PGD sharing with clinicians, based on our short onsite interviews with 57 patients who had just met with a clinician at a university health center. Our analyses identified overarching patterns in patients' PGD sharing practices and the associated challenges that arise from the information asymmetry between patients and clinicians and from patients' reliance on their memory to share their PGD. We discuss the implications of our findings for designing PGD-integrated health IT systems in ways to support patients' tracking of relevant PGD, clinicians' effective engagement with patients around PGD, and the efficient sharing and review of PGD within clinical settings. 
    more » « less