skip to main content


Title: Physiologic signatures within six hours of hospitalization identify acute illness phenotypes
During the early stages of hospital admission, clinicians use limited information to make decisions as patient acuity evolves. We hypothesized that clustering analysis of vital signs measured within six hours of hospital admission would reveal distinct patient phenotypes with unique pathophysiological signatures and clinical outcomes. We created a longitudinal electronic health record dataset for 75,762 adult patient admissions to a tertiary care center in 2014–2016 lasting six hours or longer. Physiotypes were derived via unsupervised machine learning in a training cohort of 41,502 patients applying consensus k -means clustering to six vital signs measured within six hours of admission. Reproducibility and correlation with clinical biomarkers and outcomes were assessed in validation cohort of 17,415 patients and testing cohort of 16,845 patients. Training, validation, and testing cohorts had similar age (54–55 years) and sex (55% female), distributions. There were four distinct clusters. Physiotype A had physiologic signals consistent with early vasoplegia, hypothermia, and low-grade inflammation and favorable short-and long-term clinical outcomes despite early, severe illness. Physiotype B exhibited early tachycardia, tachypnea, and hypoxemia followed by the highest incidence of prolonged respiratory insufficiency, sepsis, acute kidney injury, and short- and long-term mortality. Physiotype C had minimal early physiological derangement and favorable clinical outcomes. Physiotype D had the greatest prevalence of chronic cardiovascular and kidney disease, presented with severely elevated blood pressure, and had good short-term outcomes but suffered increased 3-year mortality. Comparing sequential organ failure assessment (SOFA) scores across physiotypes demonstrated that clustering did not simply recapitulate previously established acuity assessments. In a heterogeneous cohort of hospitalized patients, unsupervised machine learning techniques applied to routine, early vital sign data identified physiotypes with unique disease categories and distinct clinical outcomes. This approach has the potential to augment understanding of pathophysiology by distilling thousands of disease states into a few physiological signatures.  more » « less
Award ID(s):
1750192
NSF-PAR ID:
10401753
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Keim-Malpass, Jessica
Date Published:
Journal Name:
PLOS Digital Health
Volume:
1
Issue:
10
ISSN:
2767-3170
Page Range / eLocation ID:
e0000110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective

    To develop predictive models of coronavirus disease 2019 (COVID-19) outcomes, elucidate the influence of socioeconomic factors, and assess algorithmic racial fairness using a racially diverse patient population with high social needs.

    Materials and Methods

    Data included 7,102 patients with positive (RT-PCR) severe acute respiratory syndrome coronavirus 2 test at a safety-net system in Massachusetts. Linear and nonlinear classification methods were applied. A score based on a recurrent neural network and a transformer architecture was developed to capture the dynamic evolution of vital signs. Combined with patient characteristics, clinical variables, and hospital occupancy measures, this dynamic vital score was used to train predictive models.

    Results

    Hospitalizations can be predicted with an area under the receiver-operating characteristic curve (AUC) of 92% using symptoms, hospital occupancy, and patient characteristics, including social determinants of health. Parsimonious models to predict intensive care, mechanical ventilation, and mortality that used the most recent labs and vitals exhibited AUCs of 92.7%, 91.2%, and 94%, respectively. Early predictive models, using labs and vital signs closer to admission had AUCs of 81.1%, 84.9%, and 92%, respectively.

    Discussion

    The most accurate models exhibit racial bias, being more likely to falsely predict that Black patients will be hospitalized. Models that are only based on the dynamic vital score exhibited accuracies close to the best parsimonious models, although the latter also used laboratories.

    Conclusions

    This large study demonstrates that COVID-19 severity may accurately be predicted using a score that accounts for the dynamic evolution of vital signs. Further, race, social determinants of health, and hospital occupancy play an important role.

     
    more » « less
  2. Abstract Background Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well studied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in sepsis. Methods We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity analyses were performed with alternative clustering methodologies. Results A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening ( n  = 612, 13.1%), Delayed Worsening ( n  = 960, 20.5%), Rapidly Improving ( n  = 1932, 41.3%), and Delayed Improving ( n  = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-hospital mortality (28.3%, P -value < 0.001), despite a lower SOFA (mean: 4.5) at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger numbers. Conclusions Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets and identify more precise populations and endpoints for clinical trials. 
    more » « less
  3. BACKGROUND:

    Classification of perioperative risk is important for patient care, resource allocation, and guiding shared decision-making. Using discriminative features from the electronic health record (EHR), machine-learning algorithms can create digital phenotypes among heterogenous populations, representing distinct patient subpopulations grouped by shared characteristics, from which we can personalize care, anticipate clinical care trajectories, and explore therapies. We hypothesized that digital phenotypes in preoperative settings are associated with postoperative adverse events including in-hospital and 30-day mortality, 30-day surgical redo, intensive care unit (ICU) admission, and hospital length of stay (LOS).

    METHODS:

    We identified all laminectomies, colectomies, and thoracic surgeries performed over a 9-year period from a large hospital system. Seventy-seven readily extractable preoperative features were first selected from clinical consensus, including demographics, medical history, and lab results. Three surgery-specific datasets were built and split into derivation and validation cohorts using chronological occurrence. Consensusk-means clustering was performed independently on each derivation cohort, from which phenotypes’ characteristics were explored. Cluster assignments were used to train a random forest model to assign patient phenotypes in validation cohorts. We reconducted descriptive analyses on validation cohorts to confirm the similarity of patient characteristics with derivation cohorts, and quantified the association of each phenotype with postoperative adverse events by using the area under receiver operating characteristic curve (AUROC). We compared our approach to American Society of Anesthesiologists (ASA) alone and investigated a combination of our phenotypes with the ASA score.

    RESULTS:

    A total of 7251 patients met inclusion criteria, of which 2770 were held out in a validation dataset based on chronological occurrence. Using segmentation metrics and clinical consensus, 3 distinct phenotypes were created for each surgery. The main features used for segmentation included urgency of the procedure, preoperative LOS, age, and comorbidities. The most relevant characteristics varied for each of the 3 surgeries. Low-risk phenotype alpha was the most common (2039 of 2770, 74%), while high-risk phenotype gamma was the rarest (302 of 2770, 11%). Adverse outcomes progressively increased from phenotypes alpha to gamma, including 30-day mortality (0.3%, 2.1%, and 6.0%, respectively), in-hospital mortality (0.2%, 2.3%, and 7.3%), and prolonged hospital LOS (3.4%, 22.1%, and 25.8%). When combined with the ASA score, digital phenotypes achieved higher AUROC than the ASA score alone (hospital mortality: 0.91 vs 0.84; prolonged hospitalization: 0.80 vs 0.71).

    CONCLUSIONS:

    For 3 frequently performed surgeries, we identified 3 digital phenotypes. The typical profiles of each phenotype were described and could be used to anticipate adverse postoperative events.

     
    more » « less
  4. Background Heart failure is a leading cause of mortality and morbidity worldwide. Acute heart failure, broadly defined as rapid onset of new or worsening signs and symptoms of heart failure, often requires hospitalization and admission to the intensive care unit (ICU). This acute condition is highly heterogeneous and less well-understood as compared to chronic heart failure. The ICU, through detailed and continuously monitored patient data, provides an opportunity to retrospectively analyze decompensation and heart failure to evaluate physiological states and patient outcomes. Objective The goal of this study is to examine the prevalence of cardiovascular risk factors among those admitted to ICUs and to evaluate combinations of clinical features that are predictive of decompensation events, such as the onset of acute heart failure, using machine learning techniques. To accomplish this objective, we leveraged tele-ICU data from over 200 hospitals across the United States. Methods We evaluated the feasibility of predicting decompensation soon after ICU admission for 26,534 patients admitted without a history of heart failure with specific heart failure risk factors (ie, coronary artery disease, hypertension, and myocardial infarction) and 96,350 patients admitted without risk factors using remotely monitored laboratory, vital signs, and discrete physiological measurements. Multivariate logistic regression and random forest models were applied to predict decompensation and highlight important features from combinations of model inputs from dissimilar data. Results The most prevalent risk factor in our data set was hypertension, although most patients diagnosed with heart failure were admitted to the ICU without a risk factor. The highest heart failure prediction accuracy was 0.951, and the highest area under the receiver operating characteristic curve was 0.9503 with random forest and combined vital signs, laboratory values, and discrete physiological measurements. Random forest feature importance also highlighted combinations of several discrete physiological features and laboratory measures as most indicative of decompensation. Timeline analysis of aggregate vital signs revealed a point of diminishing returns where additional vital signs data did not continue to improve results. Conclusions Heart failure risk factors are common in tele-ICU data, although most patients that are diagnosed with heart failure later in an ICU stay presented without risk factors making a prediction of decompensation critical. Decompensation was predicted with reasonable accuracy using tele-ICU data, and optimal data extraction for time series vital signs data was identified near a 200-minute window size. Overall, results suggest combinations of laboratory measurements and vital signs are viable for early and continuous prediction of patient decompensation. 
    more » « less
  5. null (Ed.)
    Background The novel coronavirus SARS-CoV-2 and its associated disease, COVID-19, have caused worldwide disruption, leading countries to take drastic measures to address the progression of the disease. As SARS-CoV-2 continues to spread, hospitals are struggling to allocate resources to patients who are most at risk. In this context, it has become important to develop models that can accurately predict the severity of infection of hospitalized patients to help guide triage, planning, and resource allocation. Objective The aim of this study was to develop accurate models to predict the mortality of hospitalized patients with COVID-19 using basic demographics and easily obtainable laboratory data. Methods We performed a retrospective study of 375 hospitalized patients with COVID-19 in Wuhan, China. The patients were randomly split into derivation and validation cohorts. Regularized logistic regression and support vector machine classifiers were trained on the derivation cohort, and accuracy metrics (F1 scores) were computed on the validation cohort. Two types of models were developed: the first type used laboratory findings from the entire length of the patient’s hospital stay, and the second type used laboratory findings that were obtained no later than 12 hours after admission. The models were further validated on a multicenter external cohort of 542 patients. Results Of the 375 patients with COVID-19, 174 (46.4%) died of the infection. The study cohort was composed of 224/375 men (59.7%) and 151/375 women (40.3%), with a mean age of 58.83 years (SD 16.46). The models developed using data from throughout the patients’ length of stay demonstrated accuracies as high as 97%, whereas the models with admission laboratory variables possessed accuracies of up to 93%. The latter models predicted patient outcomes an average of 11.5 days in advance. Key variables such as lactate dehydrogenase, high-sensitivity C-reactive protein, and percentage of lymphocytes in the blood were indicated by the models. In line with previous studies, age was also found to be an important variable in predicting mortality. In particular, the mean age of patients who survived COVID-19 infection (50.23 years, SD 15.02) was significantly lower than the mean age of patients who died of the infection (68.75 years, SD 11.83; P<.001). Conclusions Machine learning models can be successfully employed to accurately predict outcomes of patients with COVID-19. Our models achieved high accuracies and could predict outcomes more than one week in advance; this promising result suggests that these models can be highly useful for resource allocation in hospitals. 
    more » « less