Commercially available fused deposition modeling (FDM) printers have yet to bridge the gap between printing soft, flexible materials and printing hard, rigid materials. This work presents a custom printer solution, based on open-source hardware and software, which allows a user to print both flexible and rigid polymer materials. The materials printed include NinjaFlex, SemiFlex, acrylonitrile-butadiene-styrene (ABS), Nylon, and Polycarbonate. In order to print rigid materials, a custom, high-temperature heated bed was designed to act as a print stage. Additionally, high temperature extruders were included in the design to accommodate the printing requirements of both flexible and rigid filaments. Across 25 equally spaced points on the print plate, the maximum temperature difference between any two points on the heated bed was found to be ∼9°C for a target temperature of 170°C. With a uniform temperature profile across the plate, functional prints were achieved in each material. The print quality varied, dependent on material; however, the standard deviation of layer thicknesses and size measurements of the parts were comparable to those produced on a Zortrax M200 printer. After calibration and further process development, the custom printer will be integrated into the NEXUS system — a multiscale additive manufacturing instrument with integrated 3D printing and robotic assembly (NSF Award #1828355).
more »
« less
Desktop Electrospinning: A Single Extruder 3D Printer for Producing Rigid Plastic and Electrospun Textiles
Abstract: We present a new type of 3D printer that combines rigid plastic printing with melt electrospinning? a technique that uses electrostatic forces to create thin fibers from a molten polymer. Our printer enables custom-shaped textile sheets (similar in feel to wool felt) to be produced alongside rigid plastic using a single material (i.e., PLA) in a single process. We contribute open-source firmware, hardware specifications, and printing parameters to achieve melt electrospinning. Our approach offers new opportunities for fabricating interactive objects and sensors that blend the flexibility, absorbency and softness of produced electrospun textiles with the structure and rigidity of hard plastic for actuation, sensing, and tactile experiences.
more »
« less
- Award ID(s):
- 1718651
- PAR ID:
- 10113186
- Date Published:
- Journal Name:
- Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
- Page Range / eLocation ID:
- Paper 204
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this research, we propose a Multi-Filament Fused Deposit Modelling (MFFMD) printer and a respective generator that can be used to produce structural parts with locally tailored functional properties. 3D-printed structural components can highly benefit from multi-material printing with tuneable functional properties. Currently, multi-material printing is mainly achieved using multiple separate nozzles, leading to discontinuous flow in switching materials. This limitation results in material interface delamination, minimal control in the continuous transition of material properties, and longer production time.To address this, we first design and build an MFFMD printer with a single customized nozzle allowing seamless switching between multiple filaments. We then develop a method that generates a continuous toolpath of a given geometry and differentiates materials based on various stress conditions at particular regions. To illustrate, we fabricate a Pratt truss as an example of a tension-compression structure as a case study. In one go, the MFFMD printer deposits resistant filament, respectively, at tension- or compression-concentrated regions based on local stress conditions. Comparative load tests are conducted to validate the performance enhancement of multi-filament prints against single-filament prints. Our proposed method is a prototypical study conducted on a small scale. While it mainly uses thermal plastic filaments, it can be expanded to other construction materials and scales in the future.more » « less
-
Plasma jet printing is an emerging alternative to popular 2-D printing techniques, such as inkjet and aerosol jet printing. The inherent nature of the plasma provides films with good adhesion upon printing without the need for thermal sintering. The reduced logistics and the ability to print a wide range of materials on rigid and flexible substrates make it a valuable technique for printed and flexible electronics. In this tutorial article, we discuss the principles behind plasma printing, printer hardware, and printing mechanisms and provide representative print results.more » « less
-
We developed an open microfluidic system to dispense and manipulate discrete droplets on planar plastic sheets. Here, a superhydrophobic material is spray-coated on commercially-available plastic sheets followed by the printing of hydrophilic symbols using an inkjet printer. The patterned plastic sheets are taped to a two-axis tilting platform, powered by stepper motors, that provides mechanical agitation for droplet transport. We demonstrate the following droplet operations: transport of droplets of different sizes, parallel transport of multiple droplets, merging and mixing of multiple droplets, dispensing of smaller droplets from a large droplet or a fluid reservoir, and one-directional transport of droplets. As a proof-of-concept, a colorimetric assay is implemented to measure the glucose concentration in sheep serum. Compared to silicon-based digital microfluidic devices, we believe that the presented system is appealing for various biological experiments because of the ease of altering design layouts of hydrophilic symbols, relatively faster turnaround time in printing plastic sheets, larger area to accommodate more tests, and lower operational costs by using off-the-shelf products.more » « less
-
Abstract Swarm manufacturing is an emerging manufacturing paradigm that employs a heterogeneous swarm of robots to accomplish complex hybrid manufacturing tasks. Cooperative 3D printing (C3DP), a specialized form of swarm manufacturing, enables multiple printers to collaboratively produce large-scale parts, addressing key tradeoffs in additive manufacturing, such as size, speed, quality, and cost. A fundamental challenge in C3DP is ensuring collision-free, time-optimal printing in a shared workspace. This is a complex problem that can be influenced by factors such as the number of printers, part geometry, printer positioning, mobility, and kinematics. In this article, we present SafeZone*, a collision-free and scalable C3DP framework that optimizes printing time by co-considering the geometry (area and shape) and topology (space-connectivity) of a shared workspace during layer partitioning. We first establish a conceptual framework to mathematically represent the topology of a layer through partition graphs. Then, we use a Voronoi tessellation within a constrained optimization framework to control the partition graph and minimize makespan. The Voronoi sites are associated with printer locations, allowing the framework to integrate physical constraints and facilitating solutions for systems with robotic manipulators. Physical testing in a four-printer scenario with robotic arms confirms that SafeZone* enables collision-free printing, resulting in a printing time reduction of 44.63% when compared to the single-printer scenario. Finally, numerical studies reveal trends in the optimal solutions concerning the chromatic number of their resulting partition graphs and the distribution of the printing areas among printers.more » « less
An official website of the United States government

