skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plasma Jet Printing: An Introduction
Plasma jet printing is an emerging alternative to popular 2-D printing techniques, such as inkjet and aerosol jet printing. The inherent nature of the plasma provides films with good adhesion upon printing without the need for thermal sintering. The reduced logistics and the ability to print a wide range of materials on rigid and flexible substrates make it a valuable technique for printed and flexible electronics. In this tutorial article, we discuss the principles behind plasma printing, printer hardware, and printing mechanisms and provide representative print results.  more » « less
Award ID(s):
1825502
PAR ID:
10505281
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Electron Devices
Volume:
70
Issue:
4
ISSN:
0018-9383
Page Range / eLocation ID:
1548 to 1553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Additive manufacturing has become a promising method for the fabrication of inexpensive, green, flexible electronics. Printed electronics on low-temperature substrates like paper are very appealing for the flexible hybrid electronics market for their use in disposable and biocompatible electronic applications and in areas like packaging, wearables, and consumer electronics. Plasma-jet printing uses a dielectric barrier discharge plasma to focus aerosolized nanoparticles onto a target substrate. The same plasma can be used to change the properties of the printed material and even sinter in situ. The technology can also be utilized in space and microgravity environments since the plasma-assisted deposition is independent of gravity. In this work, we show plasma voltage effect on deposition of gold nanoparticles and direct printing of flexible, conductive gold structures onto low-temperature paper substrates without the need for thermal or photonic post-processing. The effects of plasma parameters on the conductivity and flexible reliability of the printed films are studied, and a paper-based LED electrode is demonstrated. 
    more » « less
  2. Thermoelectric generators (TEGs) convert temperature differences into electrical power and are attractive among energy harvesting devices due to their autonomous and silent operation. While thermoelectric materials have undergone substantial improvements in material properties, a reliable and cost-effective fabrication method suitable for microgravity and space applications remains a challenge, particularly as commercial space flight and extended crewed space missions increase in frequency. This paper demonstrates the use of plasma-jet printing (PJP), a gravity-independent, electromagnetic field-assisted printing technology, to deposit colloidal thermoelectric nanoflakes with engineered nanopores onto flexible substrates at room temperature. We observe substantial improvements in material adhesion and flexibility with less than 2% and 11% variation in performance after 10 000 bending cycles over 25 mm and 8 mm radii of curvature, respectively, as compared to previously reported TE films. Our printed films demonstrate electrical conductivity of 2.5 × 10 3 S m −1 and a power factor of 70 μW m −1 K −2 at room temperature. To our knowledge, these are the first reported values of plasma-jet printed thermoelectric nanomaterial films. This advancement in plasma jet printing significantly promotes the development of nanoengineered 2D and layered materials not only for energy harvesting but also for the development of large-scale flexible electronics and sensors for both space and commercial applications. 
    more » « less
  3. Commercially available fused deposition modeling (FDM) printers have yet to bridge the gap between printing soft, flexible materials and printing hard, rigid materials. This work presents a custom printer solution, based on open-source hardware and software, which allows a user to print both flexible and rigid polymer materials. The materials printed include NinjaFlex, SemiFlex, acrylonitrile-butadiene-styrene (ABS), Nylon, and Polycarbonate. In order to print rigid materials, a custom, high-temperature heated bed was designed to act as a print stage. Additionally, high temperature extruders were included in the design to accommodate the printing requirements of both flexible and rigid filaments. Across 25 equally spaced points on the print plate, the maximum temperature difference between any two points on the heated bed was found to be ∼9°C for a target temperature of 170°C. With a uniform temperature profile across the plate, functional prints were achieved in each material. The print quality varied, dependent on material; however, the standard deviation of layer thicknesses and size measurements of the parts were comparable to those produced on a Zortrax M200 printer. After calibration and further process development, the custom printer will be integrated into the NEXUS system — a multiscale additive manufacturing instrument with integrated 3D printing and robotic assembly (NSF Award #1828355). 
    more » « less
  4. Flexible electronics on low-temperature substrates like paper are very appealing for their use in disposable and biocompatible electronic applications and areas like healthcare, wearables, and consumer electronics. Plasma-jet printing uses a dielectric barrier discharge plasma to focus aerosolized nanoparticles onto a target substrate. The same plasma can be used to change the properties of the printed material and even sinter in situ . In this work, we demonstrate one-step deposition of gold structures onto flexible and low-temperature substrates without the need for thermal or photonic post-processing. We also explore the plasma effect on the deposition of the gold nanoparticle ink. The plasma voltage is optimized for the sintering of the gold nanoparticles, and a simple procedure for manufacturing traces with increased adhesion and conductivity is presented, with a peak conductivity of 6.2 x10 5 S/m. PJP-printed gold LED interconnects and microheaters on flexible substrates are developed to demonstrate the potential of this single-step sintered deposition of conductive traces on low-temperature substrates. 
    more » « less
  5. Aerosol jet printing (AJP) is a complex process for additive electronics that is often unstable. To overcome this instability, observation while printing and control of the printing process using image-based monitoring is demonstrated. This monitoring is validated against images taken after the print and shown highly correlated and useful for the determination of printed linewidth. These images and the observed linewidth are used as input for closed-loop control of the printing process, with print speed changed in response to changes in the observed linewidth. Regression is used to relate these quantities and forms the basis of proportional and proportional integral control. Electrical test structures were printed with controlled and uncontrolled printing, and it was found that the control influenced their linewidth and electrical properties, giving improved uniformity in both size and electrical performance. 
    more » « less