Abstract. Changes in tropical precipitation over the past millennia have usually been associated with latitudinal displacements of the Intertropical Convergence Zone (ITCZ). Recent studies provide new evidence that contraction and expansion of the tropical rain belt may also have contributed to ITCZ variability on centennial timescales. Over tropical South America few records point to a similar interpretation, which prevents a clear diagnosis of ITCZ changes in the region. In order to improve our understanding of equatorial rain belt variability, our study presents a reconstruction of precipitation for the last 3200 years from the northeastern Brazil (NEB) region, an area solely influenced by ITCZ precipitation. We analyze oxygen isotopes in speleothems that serve as a faithful proxy for the past location of the southern margin of the ITCZ. Our results, in comparison with other ITCZ proxies, indicate that the range of seasonal migration, contraction, and expansion of the ITCZ was not symmetrical around the Equator on secular and multidecadal timescales. A new NEB ITCZ pattern emerges based on the comparison between two distinct proxies that characterize the ITCZ behavior during the last 2500 years, with an ITCZ zonal pattern between NEB and the eastern Amazon. In NEB, the period related to the Medieval Climate Anomaly (MCA – 950 to 1250 CE) was characterized by an abrupt transition from wet to dry conditions. These drier conditions persisted until the onset of the period corresponding to the Little Ice Age (LIA) in 1560 CE, representing the longest dry period over the last 3200 years in NEB. The ITCZ was apparently forced by teleconnections between Atlantic and Pacific that controlled the position, intensity, and extent of the Walker cell over South America, changing the zonal ITCZ characteristics, while sea surface temperature changes in both the Pacific and Atlantic stretched or weakened the ITCZ-related rainfall meridionally over NEB. Wetter conditions started around 1500 CE in NEB. During the last 500 years, our speleothems document the occurrence of some of the strongest drought events over the last centuries, which drastically affected population and environment of NEB during the Portuguese colonial period. The historical droughts were able to affect the karst system and led to significant impacts over the entire NEB region. 
                        more » 
                        « less   
                    
                            
                            Rainfall variations in central Indo-Pacific over the past 2,700 y
                        
                    
    
            Tropical rainfall variability is closely linked to meridional shifts of the Intertropical Convergence Zone (ITCZ) and zonal movements of the Walker circulation. The characteristics and mechanisms of tropical rainfall variations on centennial to decadal scales are, however, still unclear. Here, we reconstruct a replicated stalagmite-based 2,700-y-long, continuous record of rainfall for the deeply convective northern central Indo-Pacific (NCIP) region. Our record reveals decreasing rainfall in the NCIP over the past 2,700 y, similar to other records from the northern tropics. Notable centennial- to decadal-scale dry climate episodes occurred in both the NCIP and the southern central Indo-Pacific (SCIP) during the 20th century [Current Warm Period (CWP)] and the Medieval Warm Period (MWP), resembling enhanced El Niñ o -like conditions. Further, we developed a 2,000-y-long ITCZ shift index record that supports an overall southward ITCZ shift in the central Indo-Pacific and indicates southward mean ITCZ positions during the early MWP and the CWP. As a result, the drying trend since the 20 th century in the northern tropics is similar to that observed during the past warm period, suggesting that a possible anthropogenic forcing of rainfall remains indistinguishable from natural variability. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1702816
- PAR ID:
- 10113261
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 35
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 17201 to 17206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The reorganization of the Atlantic meridional overturning circulation (AMOC) is often associated with changes in Earth’s climate. These AMOC changes are communicated to the Indo-Pacific basins via wave processes and induce an overturning circulation anomaly that opposes the Atlantic changes on decadal to centennial time scales. We examine the role of this transient, interbasin overturning response, driven by an AMOC weakening, both in an ocean-only model with idealized geometry and in a coupled CO 2 quadrupling experiment, in which the ocean warms on two distinct time scales: a fast decadal surface warming and a slow centennial subsurface warming. We show that the transient interbasin overturning produces a zonal heat redistribution between the Atlantic and Indo-Pacific basins. Following a weakened AMOC, an anomalous northward heat transport emerges in the Indo-Pacific, which substantially compensates for the Atlantic southward heat transport anomaly. This zonal heat redistribution manifests as a thermal interbasin seesaw between the high-latitude North Atlantic and the subsurface Indo-Pacific and helps to explain why Antarctic temperature records generally show more gradual changes than the Northern Hemisphere during the last glacial period. In the coupled CO 2 quadrupling experiment, we find that the interbasin heat transport due to a weakened AMOC contributes substantially to the slow centennial subsurface warming in the Indo-Pacific, accounting for more than half of the heat content increase and sea level rise. Thus, our results suggest that the transient interbasin overturning circulation is a key component of the global ocean heat budget in a changing climate.more » « less
- 
            Uncertainty about the influence of anthropogenic radiative forcing on the position and strength of convective rainfall in the Intertropical Convergence Zone (ITCZ) inhibits our ability to project future tropical hydroclimate change in a warmer world. Paleoclimatic and modeling data inform on the timescales and mechanisms of ITCZ variability; yet a comprehensive, long-term perspective remains elusive. Here, we quantify the evolution of neotropical hydroclimate over the preindustrial past millennium (850 to 1850 CE) using a synthesis of 48 paleo-records, accounting for uncertainties in paleo-archive age models. We show that an interhemispheric pattern of precipitation antiphasing occurred on multicentury timescales in response to changes in natural radiative forcing. The conventionally defined “Little Ice Age” (1450 to 1850 CE) was marked by a clear shift toward wetter conditions in the southern neotropics and a less distinct and spatiotemporally complex transition toward drier conditions in the northern neotropics. This pattern of hydroclimatic change is consistent with results from climate model simulations indicating that a relative cooling of the Northern Hemisphere caused a southward shift in the thermal equator across the Atlantic basin and a southerly displacement of the ITCZ in the tropical Americas, with volcanic forcing as the principal driver. These findings are at odds with proxy-based reconstructions of ITCZ behavior in the western Pacific basin, where changes in ITCZ width and intensity, rather than mean position, appear to have driven hydroclimate transitions over the last millennium. This reinforces the idea that ITCZ responses to external forcing are region specific, complicating projections of the tropical precipitation response to global warming.more » « less
- 
            Abstract The tropical Pacific influences climate patterns across the globe, yet robust constraints on decadal to centennial‐scale climate variations are difficult to extract from sparse instrumental observations in this region. Oxygen isotope (δ18O) records from long‐lived corals enable the quantitative reconstruction of tropical Pacific climate variability and trends over the twentieth century and beyond, but such corals are exceedingly rare. Here, we use multiple short coral δ18O records to create a coral ‘ensemble’ reconstruction of twentieth century climate in the central tropical Pacific. Ten U/Th‐dated fossil coral δ18O records from Kiritimati Island (2°N, 157°W) span 1891 CE to 2006 CE, with the younger samples enabling quantitative comparison to a large ensemble of modern coral records and instrumental sea surface temperature. A composite record constructed of modern and fossil Kiritimati coral δ18O records shows a shift toward warmer and fresher conditions from 1970 CE onward, consistent with previously published records in this region.more » « less
- 
            Abstract. The primary scientific objective of MexiDrill, the Basin of MexicoDrilling Program, is development of a continuous, high-resolution∼400 kyr lacustrine record of tropical North Americanenvironmental change. The field location, in the densely populated,water-stressed Mexico City region gives this record particular societalrelevance. A detailed paleoclimate reconstruction from central Mexico willenhance our understanding of long-term natural climate variability in theNorth American tropics and its relationship with changes at higher latitudes.The site lies at the northern margin of the Intertropical Convergence Zone(ITCZ), where modern precipitation amounts are influenced by sea surfacetemperatures in the Pacific and Atlantic basins. During the Last GlacialMaximum (LGM), more winter precipitation at the site is hypothesized to have beena consequence of a southward displacement of the mid-latitude westerlies. Itthus represents a key spatial node for understanding large-scalehydrological variability of tropical and subtropical North America and isat an altitude (2240 m a.s.l.), typical of much of western North America. In addition, its sediments contain a rich record of pre-Holocene volcanichistory; knowledge of the magnitude and frequency relationships of thearea's explosive volcanic eruptions will improve capacity for riskassessment of future activity. Explosive eruption deposits will also be usedto provide the backbone of a robust chronology necessary for fullexploitation of the paleoclimate record. Here we report initial resultsfrom, and outreach activities of, the 2016 coring campaign.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    