skip to main content


Title: Indo-Pacific Warming Induced by a Weakening of the Atlantic Meridional Overturning Circulation
Abstract The reorganization of the Atlantic meridional overturning circulation (AMOC) is often associated with changes in Earth’s climate. These AMOC changes are communicated to the Indo-Pacific basins via wave processes and induce an overturning circulation anomaly that opposes the Atlantic changes on decadal to centennial time scales. We examine the role of this transient, interbasin overturning response, driven by an AMOC weakening, both in an ocean-only model with idealized geometry and in a coupled CO 2 quadrupling experiment, in which the ocean warms on two distinct time scales: a fast decadal surface warming and a slow centennial subsurface warming. We show that the transient interbasin overturning produces a zonal heat redistribution between the Atlantic and Indo-Pacific basins. Following a weakened AMOC, an anomalous northward heat transport emerges in the Indo-Pacific, which substantially compensates for the Atlantic southward heat transport anomaly. This zonal heat redistribution manifests as a thermal interbasin seesaw between the high-latitude North Atlantic and the subsurface Indo-Pacific and helps to explain why Antarctic temperature records generally show more gradual changes than the Northern Hemisphere during the last glacial period. In the coupled CO 2 quadrupling experiment, we find that the interbasin heat transport due to a weakened AMOC contributes substantially to the slow centennial subsurface warming in the Indo-Pacific, accounting for more than half of the heat content increase and sea level rise. Thus, our results suggest that the transient interbasin overturning circulation is a key component of the global ocean heat budget in a changing climate.  more » « less
Award ID(s):
1756956
NSF-PAR ID:
10330592
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
2
ISSN:
0894-8755
Page Range / eLocation ID:
815 to 832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Climate models consistently project (i) a decline in the formation of North Atlantic Deep Water (NADW) and (ii) a strengthening of the Southern Hemisphere westerly winds in response to anthropogenic greenhouse gas forcing. These two processes suggest potentially conflicting tendencies of the Atlantic meridional overturning circulation (AMOC): a weakening AMOC due to changes in the North Atlantic but a strengthening AMOC due to changes in the Southern Ocean. Here we focus on the transient evolution of the global ocean overturning circulation in response to a perturbation to the NADW formation rate. We propose that the adjustment of the Indo-Pacific overturning circulation is a critical component in mediating AMOC changes. Using a hierarchy of ocean and climate models, we show that the Indo-Pacific overturning circulation provides the first response to AMOC changes through wave processes, whereas the Southern Ocean overturning circulation responds on longer (centennial to millennial) time scales that are determined by eddy diffusion processes. Changes in the Indo-Pacific overturning circulation compensate AMOC changes, which allows the Southern Ocean overturning circulation to evolve independently of the AMOC, at least over time scales up to many decades. In a warming climate, the Indo-Pacific develops an overturning circulation anomaly associated with the weakening AMOC that is characterized by a northward transport close to the surface and a southward transport in the deep ocean, which could effectively redistribute heat between the basins. Our results highlight the importance of interbasin exchange in the response of the global ocean overturning circulation to a changing climate. 
    more » « less
  2. Abstract

    Climate models consistently project a robust weakening of the Indonesian Throughflow (ITF) and the Atlantic meridional overturning circulation (AMOC) in response to greenhouse gas forcing. Previous studies of ITF variability have largely focused on local processes in the Indo‐Pacific Basin. Here, we propose that much of the centennial‐scale ITF weakening is dynamically linked to changes in the Atlantic Basin and communicated between basins via wave processes. In response to an AMOC slowdown, the Indian Ocean develops a northward surface transport anomaly that converges mass and modifies sea surface height in the Indian Ocean, which weakens the ITF. We illustrate these dynamic interbasin connections using a 1.5‐layer reduced gravity model and then validate the responses in a comprehensive general circulation model. Our results highlight the importance of transient volume exchanges between the Atlantic and Indo‐Pacific basins in regulating the global ocean circulation in a changing climate.

     
    more » « less
  3. Abstract

    Atlantic Meridional Overturning Circulation (AMOC) disruption during the last deglaciation is hypothesized to have caused large subsurface ocean temperature anomalies, but records from key regions are not available to test this hypothesis, and other possible drivers of warming have not been fully considered. Here, we present the first reliable evidence for subsurface warming in the South Atlantic during Heinrich Stadial 1, confirming the link between large‐scale heat redistribution and AMOC. Warming extends across the Bølling‐Allerød despite predicted cooling at this time, thus spanning intervals of both weak and strong AMOC indicating another forcing mechanism that may have been previously overlooked. Transient model simulations and quasi‐conservative water mass tracers suggest that reduced northward upper ocean heat transport was responsible for the early deglacial (Heinrich Stadial 1) accumulation of heat at our shallower (~1,100 m) site. In contrast, the results suggest that warming at our deeper site (~1,900 m) site was dominated by southward advection of North Atlantic middepth heat anomalies. During the Bølling‐Allerød, the demise of ice sheets resulted in oceanographic changes in the North Atlantic that reduced convective heat loss to the atmosphere, causing subsurface warming that overwhelmed the cooling expected from an AMOC reinvigoration. The data and simulations suggest that rising atmospheric CO2did not contribute significantly to deglacial subsurface warming at our sites.

     
    more » « less
  4. Abstract

    The Atlantic Meridional Overturning Circulation (AMOC) is expected to weaken in the 21st century due to increased surface buoyancy. Such AMOC changes in ocean models are often accompanied by a subsurface reduction in density. Here we perform freshwater perturbation experiments with both a 1° coupled model and an idealized zonally averaged ocean‐only model to demonstrate that slow subsurface property changes (1) introduce a negative feedback that erodes the stratification and partially reinvigorates convection and the AMOC and (2) ensure the meridional heat transport weakens less than the AMOC. In the coupled model with a 0.1‐Sv net freshwater flux introduced around Greenland, an initial 22% AMOC reduction over 40 years is followed by a recovery of almost half the lost strength after 400 years. The final heat transport, however, is weakened by only 7%. Similar responses in the idealized model demonstrate that 2‐D ocean‐only dynamics control the changes.

     
    more » « less
  5. null (Ed.)
    Abstract As the greenhouse gas concentrations increase, a warmer climate is expected. However, numerous internal climate processes can modulate the primary radiative warming response of the climate system to rising greenhouse gas forcing. Here the particular internal climate process that we focus on is the Atlantic meridional overturning circulation (AMOC), an important global-scale feature of ocean circulation that serves to transport heat and other scalars, and we address the question of how the mean strength of AMOC can modulate the transient climate response. While the Community Earth System Model version 2 (CESM2) and the Energy Exascale Earth System Model version 1 (E3SM1) have very similar equilibrium/effective climate sensitivity, our analysis suggests that a weaker AMOC contributes in part to the higher transient climate response to a rising greenhouse gas forcing seen in E3SM1 by permitting a faster warming of the upper ocean and a concomitant slower warming of the subsurface ocean. Likewise the stronger AMOC in CESM2 by permitting a slower warming of the upper ocean leads in part to a smaller transient climate response. Thus, while the mean strength of AMOC does not affect the equilibrium/effective climate sensitivity, it is likely to play an important role in determining the transient climate response on the centennial time scale. 
    more » « less