skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Online Learning in Weakly Coupled Markov Decision Processes: A Convergence Time Study
We consider multiple parallel Markov decision processes (MDPs) coupled by global constraints, where the time varying objective and constraint functions can only be observed after the decision is made. Special attention is given to how well the decision maker can perform in T slots, starting from any state, compared to the best feasible randomized stationary policy in hindsight. We develop a new distributed online algorithm where each MDP makes its own decision each slot after observing a multiplier computed from past information. While the scenario is significantly more challenging than the classical online learning context, the algorithm is shown to have a tight O( T ) regret and constraint viola- tions simultaneously. To obtain such a bound, we combine several new ingredients including ergodicity and mixing time bound in weakly coupled MDPs, a new regret analysis for online constrained optimization, a drift analysis for queue processes, and a perturbation analysis based on Farkas’ Lemma.  more » « less
Award ID(s):
1718477
PAR ID:
10113344
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proc. ACM Meas. Anal. Comput. Syst.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper considers online convex optimization over a complicated constraint set, which typically consists of multiple functional constraints and a set constraint. The conventional online projection algorithm (Zinkevich, 2003) can be difficult to implement due to the potentially high computation complexity of the projection operation. In this paper, we relax the functional constraints by allowing them to be violated at each round but still requiring them to be satis ed in the long term. This type of relaxed online convex optimization (with long term constraints) was first considered in Mahdavi et al. (2012). That prior work proposes an algorithm to achieve O(sqrt(T)) regret and O(T^(3/4)) constraint violations for general problems and another algorithm to achieve an O(T^(2/3)) bound for both regret and constraint violations when the constraint set can be described by a nite number of linear constraints. A recent extension in Jenatton et al. (2016) can achieve O(T^(max(theta, 1-theta)) regret and O(T^(1-theta/2)) constraint violations where theta in (0,1). The current paper proposes a new simple algorithm that yields improved performance in comparison to prior works. The new algorithm achieves an O(sqrt(T)) regret bound with O(1) constraint violations. 
    more » « less
  2. We study model-free reinforcement learning (RL) algorithms for infinite-horizon average-reward Markov decision process (MDP), which is more appropriate for applications that involve continuing operations not divided into episodes. In contrast to episodic/discounted MDPs, theoretical understanding of model-free RL algorithms is relatively inadequate for the average-reward setting. In this paper, we consider both the online setting and the setting with access to a simulator. We develop computationally efficient model-free algorithms that achieve sharper guarantees on regret/sample complexity compared with existing results. In the online setting, we design an algorithm, UCB-AVG, based on an optimistic variant of variance-reduced Q-learning. We show that UCB-AVG achieves a regret bound $$\widetilde{O}(S^5A^2sp(h^*)\sqrt{T})$$ after $$T$$ steps, where $$S\times A$$ is the size of state-action space, and $sp(h^*)$ the span of the optimal bias function. Our result provides the first computationally efficient model-free algorithm that achieves the optimal dependence in $$T$$ (up to log factors) for weakly communicating MDPs, which is necessary for low regret. In contrast, prior results either are suboptimal in $$T$$ or require strong assumptions of ergodicity or uniformly mixing of MDPs. In the simulator setting, we adapt the idea of UCB-AVG to develop a model-free algorithm that finds an $$\epsilon$$-optimal policy with sample complexity $$\widetilde{O}(SAsp^2(h^*)\epsilon^{-2} + S^2Asp(h^*)\epsilon^{-1}).$$ This sample complexity is near-optimal for weakly communicating MDPs, in view of the minimax lower bound $$\Omega(SAsp(^*)\epsilon^{-2})$$. Existing work mainly focuses on ergodic MDPs and the results typically depend on $$t_{mix},$$ the worst-case mixing time induced by a policy. We remark that the diameter $$D$$ and mixing time $$t_{mix}$$ are both lower bounded by $sp(h^*)$, and $$t_{mix}$$ can be arbitrarily large for certain MDPs. On the technical side, our approach integrates two key ideas: learning an $$\gamma$$-discounted MDP as an approximation, and leveraging reference-advantage decomposition for variance in optimistic Q-learning. As recognized in prior work, a naive approximation by discounted MDPs results in suboptimal guarantees. A distinguishing feature of our method is maintaining estimates of value-difference between state pairs to provide a sharper bound on the variance of reference advantage. We also crucially use a careful choice of the discounted factor $$\gamma$$ to balance approximation error due to discounting and the statistical learning error, and we are able to maintain a good-quality reference value function with $O(SA)$ space complexity. 
    more » « less
  3. null (Ed.)
    In this work we consider the problem of online submodular maximization under a cardinality constraint with differential privacy (DP). A stream of T submodular functions over a common finite ground set U arrives online, and at each time-step the decision maker must choose at most k elements of U before observing the function. The decision maker obtains a profit equal to the function evaluated on the chosen set and aims to learn a sequence of sets that achieves low expected regret. In the full-information setting, we develop an (πœ€,𝛿)-DP algorithm with expected (1-1/e)-regret bound of 𝑂(π‘˜2log|π‘ˆ|𝑇logπ‘˜/π›Ώβˆšπœ€). This algorithm contains k ordered experts that learn the best marginal increments for each item over the whole time horizon while maintaining privacy of the functions. In the bandit setting, we provide an (πœ€,𝛿+𝑂(π‘’βˆ’π‘‡1/3))-DP algorithm with expected (1-1/e)-regret bound of 𝑂(logπ‘˜/π›Ώβˆšπœ€(π‘˜(|π‘ˆ|log|π‘ˆ|)1/3)2𝑇2/3). One challenge for privacy in this setting is that the payoff and feedback of expert i depends on the actions taken by her i-1 predecessors. This particular type of information leakage is not covered by post-processing, and new analysis is required. Our techniques for maintaining privacy with feedforward may be of independent interest. 
    more » « less
  4. This paper considers online convex optimization (OCO) with stochastic constraints, which generalizes Zinkevich’s OCO over a known simple fixed set by introducing multiple stochastic functional constraints that are i.i.d. generated at each round and are disclosed to the decision maker only after the decision is made. This formulation arises naturally when decisions are restricted by stochastic environ- ments or deterministic environments with noisy observations. It also includes many important problems as special case, such as OCO with long term constraints, stochastic constrained convex optimization, and deterministic constrained con- vex optimization. To solve this problem, this paper proposes a new algorithm that achieves O(√T ) expected regret and constraint violations and O(√T log(T )) high probability regret and constraint violations. Experiments on a real-world data center scheduling problem further verify the performance of the new algorithm. 
    more » « less
  5. This paper considers online convex optimization (OCO) with stochastic constraints, which generalizes Zinkevich’s OCO over a known simple fixed set by introducing multiple stochastic functional constraints that are i.i.d. generated at each round and are disclosed to the decision maker only after the decision is made. This formulation arises naturally when decisions are restricted by stochastic environ- ments or deterministic environments with noisy observations. It also includes many important problems as special case, such as OCO with long term constraints, stochastic constrained convex optimization, and deterministic constrained con- vex optimization. To solve this problem, this paper proposes a new algorithm that achieves O(√T ) expected regret and constraint violations and O(√T log(T )) high probability regret and constraint violations. Experiments on a real-world data center scheduling problem further verify the performance of the new algorithm. 
    more » « less