skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Online Restless Multi-Armed Bandits with Long-Term Fairness Constraints
Restless multi-armed bandits (RMAB) have been widely used to model sequential decision making problems with constraints. The decision maker (DM) aims to maximize the expected total reward over an infinite horizon under an “instantaneous activation constraint” that at most B arms can be activated at any decision epoch, where the state of each arm evolves stochastically according to a Markov decision process (MDP). However, this basic model fails to provide any fairness guarantee among arms. In this paper, we introduce RMAB-F, a new RMAB model with “long-term fairness constraints”, where the objective now is to maximize the longterm reward while a minimum long-term activation fraction for each arm must be satisfied. For the online RMAB-F setting (i.e., the underlying MDPs associated with each arm are unknown to the DM), we develop a novel reinforcement learning (RL) algorithm named Fair-UCRL. We prove that Fair-UCRL ensures probabilistic sublinear bounds on both the reward regret and the fairness violation regret. Compared with off-the-shelf RL methods, our Fair-UCRL is much more computationally efficient since it contains a novel exploitation that leverages a low-complexity index policy for making decisions. Experimental results further demonstrate the effectiveness of our Fair-UCRL.  more » « less
Award ID(s):
2148309
PAR ID:
10501336
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the AAAI Conference on Artificial Intelligence
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
14
ISSN:
2159-5399
Page Range / eLocation ID:
15616 to 15624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Restless multi-armed bandits (RMAB) has been widely used to model constrained sequential decision making problems, where the state of each restless arm evolves according to a Markov chain and each state transition generates a scalar reward. However, the success of RMAB crucially relies on the availability and quality of reward signals. Unfortunately, specifying an exact reward function in practice can be challenging and even infeasible. In this paper, we introduce Pref-RMAB, a new RMAB model in the presence of preference signals, where the decision maker only observes pairwise preference feedback rather than scalar reward from the activated arms at each decision epoch. Preference feedback, however, arguably contains less information than the scalar reward, which makes Pref-RMAB seemingly more difficult. To address this challenge, we present a direct online preference learning (DOPL) algorithm for Pref-RMAB to efficiently explore the unknown environments, adaptively collect preference data in an online manner, and directly leverage the preference feedback for decision-makings. We prove that DOPL yields a sublinear regret. To our best knowledge, this is the first algorithm to ensure $$\tilde{\mathcal{O}}(\sqrt{T\ln T})$$ regret for RMAB with preference feedback. Experimental results further demonstrate the effectiveness of DOPL. 
    more » « less
  2. In online recommendation, customers arrive in a sequential and stochastic manner from an underlying distribution and the online decision model recommends a chosen item for each arriving individual based on some strategy. We study how to recommend an item at each step to maximize the expected reward while achieving user-side fairness for customers, i.e., customers who share similar profiles will receive a similar reward regardless of their sensitive attributes and items being recommended. By incorporating causal inference into bandits and adopting soft intervention to model the arm selection strategy, we first propose the d-separation based UCB algorithm (D-UCB) to explore the utilization of the d-separation set in reducing the amount of exploration needed to achieve low cumulative regret. Based on that, we then propose the fair causal bandit (F-UCB) for achieving the counterfactual individual fairness. Both theoretical analysis and empirical evaluation demonstrate effectiveness of our algorithms. 
    more » « less
  3. We study a hinted heterogeneous multi-agent multi-armed bandits problem (HMA2B), where agents can query low-cost observations (hints) in addition to pulling arms. In this framework, each of the M agents has a unique reward distribution over K arms, and in T rounds, they can observe the reward of the arm they pull only if no other agent pulls that arm. The goal is to maximize the total utility by querying the minimal necessary hints without pulling arms, achieving time-independent regret. We study HMA2B in both centralized and decentralized setups. Our main centralized algorithm, GP-HCLA, which is an extension of HCLA, uses a central decision-maker for arm-pulling and hint queries, achieving O(M^4 K) regret with O(M K log T) adaptive hints. In decentralized setups, we propose two algorithms, HD-ETC and EBHD-ETC, that allow agents to choose actions independently through collision-based communication and query hints uniformly until stopping, yielding O(M^3 K^2) regret with O(M^3 K log T) hints, where the former requires knowledge of the minimum gap and the latter does not. Finally, we establish lower bounds to prove the optimality of our results and verify them through numerical simulations. 
    more » « less
  4. We propose a novel formulation of group fairness with biased feedback in the contextual multi-armed bandit (CMAB) setting. In the CMAB setting, a sequential decision maker must, at each time step, choose an arm to pull from a finite set of arms after observing some context for each of the potential arm pulls. In our model, arms are partitioned into two or more sensitive groups based on some protected feature(s) (e.g., age, race, or socio-economic status). Initial rewards received from pulling an arm may be distorted due to some unknown societal or measurement bias. We assume that in reality these groups are equal despite the biased feedback received by the agent. To alleviate this, we learn a societal bias term which can be used to both find the source of bias and to potentially fix the problem outside of the algorithm. We provide a novel algorithm that can accommodate this notion of fairness for an arbitrary number of groups, and provide a theoretical bound on the regret for our algorithm. We validate our algorithm using synthetic data and two real-world datasets for intervention settings wherein we want to allocate resources fairly across groups. 
    more » « less
  5. In this paper, we propose a framework for achieving long-term fair sequential decision making. By conducting both the hard and soft interventions, we propose to take path-specific effects on the time-lagged causal graph as a quantitative tool for measuring long-term fairness. The problem of fair sequential decision making is then formulated as a constrained optimization problem with the utility as the objective and the long-term and short-term fairness as constraints. We show that such an optimization problem can be converted to a performative risk optimization. Finally, repeated risk minimization (RRM) is used for model training, and the convergence of RRM is theoretically analyzed. The empirical evaluation shows the effectiveness of the proposed algorithm on synthetic and semi-synthetic temporal datasets. 
    more » « less