skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determining Relative Argument Specificity and Stance for Complex Argumentative Structures
Systems for automatic argument generation and debate require the ability to (1) determine the stance of any claims employed in the argument and (2) assess the specificity of each claim relative to the argument context. Existing work on understanding claim specificity and stance, however, has been limited to the study of argumentative structures that are relatively shallow, most often consisting of a single claim that directly supports or opposes the argument thesis. In this paper, we tackle these tasks in the context of complex arguments on a diverse set of topics. In particular, our dataset consists of manually curated argument trees for 741 controversial topics covering 95,312 unique claims; lines of argument are generally of depth 2 to 6. We find that as the distance between a pair of claims increases along the argument path, determining the relative specificity of a pair of claims becomes easier and determining their relative stance becomes harder.  more » « less
Award ID(s):
1741441
PAR ID:
10113369
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL)
Page Range / eLocation ID:
4630-4641
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Research in the social sciences and psychology has shown that the persuasiveness of an argument depends not only the language employed, but also on attributes of the source/communicator, the audience, and the appropriateness and strength of the argument’s claims given the pragmatic and discourse context of the argument. Among these characteristics of persuasive arguments, prior work in NLP does not explicitly investigate the effect of the pragmatic and discourse context when determining argument quality. This paper presents a new dataset to initiate the study of this aspect of argumentation: it consists of a diverse collection of arguments covering 741 controversial topics and comprising over 47,000 claims. We further propose predictive models that incorporate the pragmatic and discourse context of argumentative claims and show that they outperform models that rely only on claim-specific linguistic features for predicting the perceived impact of individual claims within a particular line of argument. 
    more » « less
  2. null (Ed.)
    We extend evidence-aware claim verification to the context of positive-unlabeled (PU) learning. Existing works assume the truth and the falsity of the claims are known for training and form the task as a supervised learning problem. However, this assumption underestimates the difficulty of collecting false claims; we argue that claim verification is more challenging in the absence of negative labels. We consider a more practical setting, where only a comparatively small number of true claims are labeled and more claims remain unlabeled. Thus, we formulate the claim verification task as a PU learning problem. We decouple learning representation of claim-evidence pair from PU learning and adopt a pre-trained universal language model to encode claim-evidence pairs. We further propose to use the generative adversarial network (GAN) to capture the latent alignment between encoded claim-evidence pair and the truthfulness. We leverage the verification as part of the GAN by extending previous GAN based PU learning. We show that the proposed model achieves the best performance with a small amount of labeled data and is robust to the truthfulness prior estimation. We conduct a thorough analysis of the model selection. The proposed approach performs the best under two practical scenarios: (i) the unlabeled data is more than the labeled data; (ii) and the unlabeled positive data is more than the unlabeled negative data. 
    more » « less
  3. Knowledge graph has been widely used in fact checking, owing to its capability to provide crucial background knowledge to help verify claims. Traditional fact checking works mainly focus on analyzing a single claim but have largely ignored analysis on the semantic consistency of pair-wise claims, despite its key importance in the real-world applications, e.g., multimodal fake news detection. This paper proposes a graph neural network based model INSPECTOR for pair-wise fact checking. Given a pair of claims, INSPECTOR aims to detect the potential semantic inconsistency of the input claims. The main idea of INSPECTOR is to use a graph attention neural network to learn a graph embedding for each claim in the pair, then use a tensor neural network to classify this pair of claims as consistent vs. inconsistent. The experiment results show that our algorithm outperforms state-of-the-art methods, with a higher accuracy and a lower variance. 
    more » « less
  4. Accurate information from both sides of the contemporary issues is known to be an ‘antidote in confirmation bias’. While these types of information help the educators to improve their vital skills including critical thinking and open-mindedness, they are relatively rare and hard to find online. With the well-researched argumentative opinions (arguments) on controversial issues shared by Procon.org in a non-partisan format, detecting the stance of arguments is a crucial step to automate organizing such resources. We use a universal pretrained language model with weight-dropped LSTM neural network to leverage the context of an argument for stance detection on the proposed dataset. Experimental results show that the dataset is challenging, however, utilizing the pretrained language model fine-tuned on context information yields a general model that beats the competitive baselines. We also provide analysis to find the informative segments of an argument to our stance detection model and investigate the relationship between the sentiment of an argument with its stance. 
    more » « less
  5. Accurate information from both sides of the contemporary issues is known to be an `antidote in confirmation bias'. While these types of information help the educators to improve their vital skills including critical thinking and open-mindedness, they are relatively rare and hard to find online. With the well-researched argumentative opinions (arguments) on controversial issues shared by Procon.org in a nonpartisan format, detecting the stance of arguments is a crucial step to automate organizing such resources. We use a universal pretrained language model with weight-dropped LSTM neural network to leverage the context of an argument for stance detection on the proposed dataset. Experimental results show that the dataset is challenging, however, utilizing the pretrained language model fine-tuned on context information yields a general model that beats the competitive baselines. We also provide analysis to find the informative segments of an argument to our stance detection model and investigate the relationship between the sentiment of an argument with its stance. 
    more » « less