skip to main content

Search for: All records

Award ID contains: 1741441

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Images and text co-occur constantly on the web, but explicit links between images and sentences (or other intra-document textual units) are often not present. We present algorithms that discover image-sentence relationships without relying on explicit multimodal annotation in training. We experiment on seven datasets of varying difficulty, ranging from documents consisting of groups of images captioned post hoc by crowdworkers to naturally-occurring user-generated multimodal documents. We find that a structured training objective based on identifying whether collections of images and sentences co-occur in documents can suffice to predict links between specific sentences and specific images within the same document at test time.
  2. Research in the social sciences and psychology has shown that the persuasiveness of an argument depends not only the language employed, but also on attributes of the source/communicator, the audience, and the appropriateness and strength of the argument’s claims given the pragmatic and discourse context of the argument. Among these characteristics of persuasive arguments, prior work in NLP does not explicitly investigate the effect of the pragmatic and discourse context when determining argument quality. This paper presents a new dataset to initiate the study of this aspect of argumentation: it consists of a diverse collection of arguments covering 741 controversial topics and comprising over 47,000 claims. We further propose predictive models that incorporate the pragmatic and discourse context of argumentative claims and show that they outperform models that rely only on claim-specific linguistic features for predicting the perceived impact of individual claims within a particular line of argument.
  3. Community norm violations can impair constructive communication and collaboration online. As a defense mechanism, community moderators often address such transgressions by temporarily blocking the perpetrator. Such actions, however, come with the cost of potentially alienating community members. Given this tradeoff, it is essential to understand to what extent, and in which situations, this common moderation practice is effective in reinforcing community rules. In this work, we introduce a computational framework for studying the future behavior of blocked users on Wikipedia. After their block expires, they can take several distinct paths: they can reform and adhere to the rules, but they can also recidivate, or straight-out abandon the community. We reveal that these trajectories are tied to factors rooted both in the characteristics of the blocked individual and in whether they perceived the block to be fair and justified. Based on these insights, we formulate a series of prediction tasks aiming to determine which of these paths a user is likely to take after being blocked for their first offense, and demonstrate the feasibility of these new tasks. Overall, this work builds towards a more nuanced approach to moderation by highlighting the tradeoffs that are in play.
  4. Controversial posts are those that split the preferences of a community, receiving both significant positive and significant negative feedback. Our inclusion of the word “community” here is deliberate: what is controversial to some audiences may not be so to others. Using data from several different communities on, we predict the ultimate controversiality of posts, leveraging features drawn from both the textual content and the tree structure of the early comments that initiate the discussion. We find that even when only a handful of comments are available, e.g., the first 5 comments made within 15 minutes of the original post, discussion features often add predictive capacity to strong content-andrate only baselines. Additional experiments on domain transfer suggest that conversations tructure features often generalize to other communities better than conversation-content features do.
  5. People often share personal narratives in order to seek advice from others. To properly infer the narrator’s intention, one needs to apply a certain degree of common sense and social intuition. To test the capabilities of NLP systems to recover such intuition, we introduce the new task of inferring what is the adviceseeking goal behind a personal narrative. We formulate this as a cloze test, where the goal is to identify which of two advice-seeking questions was removed from a given narrative. The main challenge in constructing this task is finding pairs of semantically plausible adviceseeking questions for given narratives. To address this challenge, we devise a method that exploits commonalities in experiences people share online to automatically extract pairs of questions that are appropriate candidates for the cloze task. This results in a dataset of over 20,000 personal narratives, each matched with a pair of related advice-seeking questions: one actually intended by the narrator, and the other one not. The dataset covers a very broad array of human experiences, from dating, to career options, to stolen iPads. We use human annotation to determine the degree to which the task relies on common sense and social intuition in addition tomore »a semantic understanding of the narrative. By introducing several baselines for this new task we demonstrate its feasibility and identify avenues for better modeling the intention of the narrator.« less
  6. Data collection often involves the partial measurement of a larger system. A common example arises in collecting network data: we often obtain network datasets by recording all of the interactions among a small set of core nodes, so that we end up with a measurement of the network consisting of these core nodes along with a potentially much larger set of fringe nodes that have links to the core. Given the ubiquity of this process for assembling network data, it is crucial to understand the role of such a “core-fringe” structure. Here we study how the inclusion of fringe nodes affects the standard task of network link prediction. One might initially think the inclusion of any additional data is useful, and hence that it should be beneficial to include all fringe nodes that are available. However, we find that this is not true; in fact, there is substantial variability in the value of the fringe nodes for prediction. Once an algorithm is selected, in some datasets, including any additional data from the fringe can actually hurt prediction performance; in other datasets, including some amount of fringe information is useful before prediction performance saturates or even declines; and in further cases,more »including the entire fringe leads to the best performance. While such variety might seem surprising, we show that these behaviors are exhibited by simple random graph models.« less
  7. Debate is a process that gives individuals the opportunity to express, and to be exposed to, diverging viewpoints on controversial issues; and the existence of online debating platforms makes it easier for individuals to participate in debates and obtain feedback on their debating skills. But understanding the factors that contribute to a user’s success in debate is complicated: while success depends, in part, on the characteristics of the language they employ, it is also important to account for the degree to which their beliefs and personal traits are compatible with that of the audience. Friendships and previous interactions among users on the platform may further influence success. In this work, we aim to better understand the mechanisms behind success in online debates. In particular, we study the relative effects of debaters’ language, their prior beliefs and personal traits, and their social interactions with other users. We find, perhaps surprisingly, that characteristics of users’ social interactions play the most important role in determining their success in debates although the best predictive performance is achieved by combining social interaction features with features
  8. Moderators of online communities often employ comment deletion as a tool. We ask here whether, beyond the positive effects of shielding a community from undesirable content, does comment removal actually cause the behavior of the comment’s author to improve? We examine this question in a particularly well-moderated community, the ChangeMyView subreddit. The standard analytic approach of interrupted time-series analysis unfortunately cannot answer this question of causality because it fails to distinguish the effect of having made a non-compliant comment from the effect of being subjected to moderator removal of that comment. We therefore leverage a “delayed feedback” approach based on the observation that some users may remain active between the time when they posted the non-compliant comment and the time when that comment is deleted. Applying this approach to such users, we reveal the causal role of comment deletion in reducing immediate noncompliance rates, although we do not find evidence of it having a causal role in inducing other behavior improvements. Our work thus empirically demonstrates both the promise and some potential limits of content removal as a positive moderation strategy, and points to future directions for identifying causal effects from observational data.
  9. Modern NLP applications have enjoyed a great boost utilizing neural networks models. Such deep neural models, however, are not applicable to most human languages due to the lack of annotated training data for various NLP tasks. Cross-lingual transfer learning (CLTL) is a viable method for building NLP models for a low-resource target language by leveraging labeled data from other (source) languages. In this work, we focus on the multilingual transfer setting where training data in multiple source languages is leveraged to further boost target language performance. Unlike most existing methods that rely only on language-invariant features for CLTL, our approach coherently utilizes both language invariant and language-specific features at instance level. Our model leverages adversarial networks to learn language-invariant features, and mixture-of-experts models to dynamically exploit the similarity between the target language and each individual source language1. This enables our model to learn effectively what to share between various languages in the multilingual setup. Moreover, when coupled with unsupervised multilingual embeddings, our model can operate in a zero-resource setting where neither target language training data nor cross-lingual resources are available. Our model achieves significant performance gains over prior art, as shown in an extensive set of experiments over multiple textmore »classification and sequence tagging.« less
  10. Existing argumentation datasets have succeeded in allowing researchers to develop computational methods for analyzing the content, structure and linguistic features of argumentative text. They have been much less successful in fostering studies of the effect of “user” traits — characteristics and beliefs of the participants — on the debate/argument outcome as this type of user information is generally not available. This paper presents a dataset of 78,376 debates generated over a 10-year period along with surprisingly comprehensive participant profiles. We also complete an example study using the dataset to analyze the effect of selected user traits on the debate outcome in comparison to the linguistic features typically employed in studies of this kind.