skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving First Level Cache Efficiency for GPUs Using Dynamic Line Protection
A modern Graphics Processing Unit (GPU) utilizes L1 Data (L1D) caches to reduce memory bandwidth requirements and latencies. However, the L1D cache can easily be overwhelmed by many memory requests from GPU function units, which can bottleneck GPU performance. It has been shown that the performance of L1D caches is greatly reduced for many GPU applications as a large amount of L1D cache lines are replaced before they are re-referenced. By examining the cache access patterns of these applications, we observe L1D caches with low associativity have difficulty capturing data locality for GPU applications with diverse reuse patterns. These patterns result in frequent line replacements and low data re-usage. To improve the efficiency of L1D caches, we design a Dynamic Line Protection scheme (DLP) that can both preserve valuable cache lines and increase cache line utilization. DLP collects data reuse information from the L1D cache. This information is used to predict protection distances for each memory instruction at runtime, which helps maintain a balance between exploitation of data locality and over-protection of cache lines with long reuse distances. When all cache lines are protected in a set, redundant cache misses are bypassed to reduce the contention for the set. The evaluation result shows that our proposed solution improves cache hits while reducing cache traffic for cache-insufficient applications, achieving up to 137% and an average of 43% IPC improvement over the baseline.  more » « less
Award ID(s):
1149539
PAR ID:
10113425
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the International Conference on Parallel Processing (ICPP)
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging Non-Volatile Memories (NVMs) are expected to be included in future main memory, providing the opportunity to host important data persistently in main memory. However, achieving persistency requires that programs be written with failure-safety in mind. Many persistency models and techniques have been proposed to help the programmer reason about failure-safety. They require that the programmer eagerly flush data out of caches to make it persistent. Eager persistency comes with a large overhead because it adds many instructions to the program for flushing cache lines and incurs costly stalls at barriers to wait for data to become durable. To reduce these overheads, we propose Lazy Persistency (LP), a software persistency technique that allows caches to slowly send dirty blocks to the NVMM through natural evictions. With LP, there are no additional writes to NVMM, no decrease in write endurance, and no performance degradation from cache line flushes and barriers. Persistency failures are discovered using software error detection (checksum), and the system recovers from them by recomputing inconsistent results. We describe the properties and design of LP and demonstrate how it can be applied to loop-based kernels popularly used in scientific computing. We evaluate LP and compare it to the state-of-the-art Eager Persistency technique from prior work. Compared to it, LP reduces the execution time and write amplification overheads from 9% and 21% to only 1% and 3%, respectively. 
    more » « less
  2. Decision Forests are popular machine learning techniques that assist scientists to extract knowledge from massive data sets. This class of tool remains popular because of their interpretability and ease of use, unlike other modern machine learning methods, such as kernel machines and deep learning. Decision forests also scale well for use with large data because training and run time operations are trivially parallelizable allowing for high inference throughputs. A negative aspect of these forests, and an untenable property for many real time applications, is their high inference latency caused by the combination of large model sizes with random memory access patterns. We present memory packing techniques and a novel tree traversal method to overcome this deficiency. The result of our system is a grouping of trees into a hierarchical structure. At low levels, we pack the nodes of multiple trees into contiguous memory blocks so that each memory access fetches data for multiple trees. At higher levels, we use leaf cardinality to identify the most popular paths through a tree and collocate those paths in contiguous cache lines. We extend this layout with a re-ordering of the tree traversal algorithm to take advantage of the increased memory throughput provided by out-of-order execution and cache-line prefetching. Together, these optimizations increase the performance and parallel scalability of classification in ensembles by a factor of ten over an optimized C++ implementation and a popular R-language implementation. 
    more » « less
  3. Over the past decade, three-dimensional die stacking technology has been considered for building large-scale in-package memory systems. In particular, in-package DRAM cache has been considered as a promising solution for high bandwidth and large-scale cache architectures. There are, however, significant challenges such as limited energy efficiency, costly tag management, and physical limitations for scalability that need to be effectively addressed before one can adopt in-package caches in the real-world applications. This paper proposes R-Cache, an in-package cache made by 3D die stacking of memristive memory arrays to alleviate the above-mentioned challenges. Our simulation results on a set of memory intensive parallel applications indicate that R-Cache outperforms the state-of-the-art proposals for in-package caches. R-Cache improves performance by 38% and 27% over the state-of-the-art direct mapped and set associative cache architectures, respectively. Moreover, R-Cache results in averages of 40% and 27% energy reductions as compared to the direct mapped and set-associative cache systems. 
    more » « less
  4. The gem5 simulator offers Classic and Ruby as two separate memory models for simulating on-chip caches. The Classic model, which originated from M5, is a quick and simple option that allows for easy configuration, but only supports a basic MOESI coherence protocol. On the other hand, the Ruby model, which was developed by GEMS [2], is a more advanced and flexible option that can accurately simulate a wider range of cache coherence protocols and features. However, choosing between the two memory system models in gem5 is challenging for researchers as each has advantages and limitations which can be inconvenient. In particular, this has led to a bifurcation of effort where prior work has added replacement policies to Classic and Ruby in parallel – duplicating effort unnecessarily and preventing users from using a desired replacement policy if it is not implemented in the desired memory model (e.g., users could only use RRIP in Classic). Accordingly, we merged the cache replacement policies from Classic to Ruby, enabling users to use any of the replacement policies in either memory model. Gem5 currently has the capability to support 13 replacement policies, which can be used exchangeable within the Classic and Ruby cache models, including commonly used options like LRU, FIFO, PseudoLRU, and different types of RRIPs. After combining the replacement policies for the Classic and Ruby cache models, we designed and integrated (into gem5’s nightly regressions) multiple corner case tests to verify and ensure the continued correct functionality of these policies. Through these tests, we identified and fixed several bugs to ensure that the replacement policies operate correctly. Finally, with the newly enabled and verified functionality, since there is limited information about how different replacement policies affects GPU performance, we decided to use gem5 to study these policies in a GPU context. Specifically, we study GPU L2 caches, since GPU L1 caches are often used to stream data through and thus are unlikely to be significantly impacted by replacement policy. 
    more » « less
  5. The gem5 simulator offers Classic and Ruby as two separate memory models for simulating on-chip caches. The Classic model, which originated from M5, is a quick and simple option that allows for easy configuration, but only supports a basic MOESI coherence protocol. On the other hand, the Ruby model, which was developed by GEMS [2], is a more advanced and flexible option that can accurately simulate a wider range of cache coherence protocols and features. However, choosing between the two memory system models in gem5 is challenging for researchers as each has advantages and limitations which can be inconvenient. In particular, this has led to a bifurcation of effort where prior work has added replacement policies to Classic and Ruby in parallel – duplicating effort unnecessarily and preventing users from using a desired replacement policy if it is not implemented in the desired memory model (e.g., users could only use RRIP in Classic). Accordingly, we merged the cache replacement policies from Classic to Ruby, enabling users to use any of the replacement policies in either memory model. Gem5 currently has the capability to support 13 replacement policies, which can be used exchangeable within the Classic and Ruby cache models, including commonly used options like LRU, FIFO, PseudoLRU, and different types of RRIPs. After combining the replacement policies for the Classic and Ruby cache models, we designed and integrated (into gem5’s nightly regressions) multiple corner case tests to verify and ensure the continued correct functionality of these policies. Through these tests, we identified and fixed several bugs to ensure that the replacement policies operate correctly. Finally, with the newly enabled and verified functionality, since there is limited information about how different replacement policies affects GPU performance, we decided to use gem5 to study these policies in a GPU context. Specifically, we study GPU L2 caches, since GPU L1 caches are often used to stream data through and thus are unlikely to be significantly impacted by replacement policy. 
    more » « less