skip to main content

Title: Validation of Snow Multibands in the Comma Head of an Extratropical Cyclone Using a 40-Member Ensemble

This paper investigates the ability of the Weather Research and Forecasting (WRF) Model in simulating multiple small-scale precipitation bands (multibands) within the extratropical cyclone comma head using four winter storm cases from 2014 to 2017. Using the model output, some physical processes are explored to investigate band prediction. A 40-member WRF ensemble was constructed down to 2-km grid spacing over the Northeast United States using different physics, stochastic physics perturbations, different initial/boundary conditions from the first five perturbed members of the Global Forecast System (GFS) Ensemble Reforecast (GEFSR), and a stochastic kinetic energy backscatter scheme (SKEBS). It was found that 2-km grid spacing is adequate to resolve most snowbands. A feature-based verification is applied to hourly WRF reflectivity fields from each ensemble member and the WSR-88D radar reflectivity at 2-km height above sea level. The Method for Object-Based Diagnostic Evaluation (MODE) tool is used for identifying multibands, which are defined as two or more bands that are 5–20 km in width and that also exhibit a >2:1 aspect ratio. The WRF underpredicts the number of multibands and has a slight eastward position bias. There is no significant difference in frontogenetical forcing, vertical stability, moisture, and vertical shear between the banded versus nonbanded members. Underpredicted band members tend to have slightly stronger frontogenesis than observed, which may be consolidating the bands, but overall there is no clear linkage in ambient condition errors and band errors, thus leaving the source for the band underprediction motivation for future work.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Weather and Forecasting
Page Range / eLocation ID:
p. 1343-1363
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A well-known problem in high-resolution ensembles has been a lack of sufficient spread among members. Modelers often have used mixed physics to increase spread, but this can introduce problems including computational expense, clustering of members, and members that are not all equally skillful. Thus, a detailed examination of the impacts of using mixed physics is important. The present study uses two years of Community Leveraged Unified Ensemble (CLUE) output to isolate the impact of mixed physics in 36-h forecasts made using a convection-permitting ensemble with 3-km horizontal grid spacing. One 10-member subset of the CLUE used only perturbed initial conditions (ICs) and lateral boundary conditions (LBCs) while another 10-member ensemble used the same mixed ICs and LBCs but also introduced mixed physics. The cases examined occurred during NOAA’s Hazardous Weather Testbed Spring Forecast Experiments in 2016 and 2017. Traditional gridpoint metrics applied to each member and the ensemble as a whole, along with object-based verification statistics for all members, were computed for composite reflectivity and 1- and 3-h accumulated precipitation using the Model Evaluation Tools (MET) software package. It is found that the mixed physics increases variability substantially among the ensemble members, more so for reflectivity than precipitation, such that the envelope of members is more likely to encompass the observations. However, the increased variability is mostly due to the introduction of both substantial high biases in members using one microphysical scheme, and low biases in other schemes. Overall ensemble skill is not substantially different from the ensemble using a single physics package.

    more » « less
  2. This study evaluates moist physics in the Weather Research and Forecasting (WRF) Model using observations collected during the Olympic Mountains Experiment (OLYMPEX) field campaign by the Global Precipitation Measurement (GPM) satellite, including data from the GPM Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments. Even though WRF using Thompson et al. microphysics was able to realistically simulate water vapor concentrations approaching the barrier, there was underprediction of cloud water content and rain rates offshore and over western slopes of terrain. We showed that underprediction of rain rate occurred when cloud water was underpredicted, establishing a connection between cloud water and rain-rate deficits. Evaluations of vertical hydrometeor mixing ratio profiles indicated that WRF produced too little cloud water and rainwater content, particularly below 2.5 km, with excessive snow above this altitude. Simulated mixing ratio profiles were less influenced by coastal proximity or midlatitude storm sector than were GMI profiles. Evaluations of different synoptic storm sectors suggested that postfrontal storm sectors were simulated most realistically, while warm sectors had the largest errors. DPR observations confirm the underprediction of rain rates noted by GMI, with no dependence on whether rain occurs over land or water. Finally, WRF underpredicted radar reflectivity below 2 km and overpredicted above 2 km, consistent with GMI vertical mixing ratio profiles.

    more » « less
  3. Abstract

    Ensembles of predictions are critical to modern weather forecasting. However, visualizing ensembles and their means in a useful way remains challenging. Existing methods of creating ensemble means do not recognize the physical structures that humans could identify within the ensemble members; therefore, visualizations for variables such as reflectivity lose important information and are difficult for human forecasters to interpret. In response, the authors create an improved ensemble mean that retains more structural information. The authors examine and expand upon the object-based Geometry-Sensitive Ensemble Mean (GEM) defined by Li and Zhang from a meteorological perspective. The authors apply low-intensity thresholding to WRF-simulated radar reflectivity images of lake-effect snowbands, tropical cyclones, and severe thunderstorms and then process them with the GEM system. Gaussian mixture model–based signatures retain the geometric structure of these phenomena and are used to compute a Wasserstein barycenter as the centroid for the ensemble; D2 clustering is employed to examine different scenarios among the ensemble members. Three types of ensemble mean image are created from the centroid of the ensemble or cluster, which each improve upon the traditional pixel-wise average in different ways, successfully capture aspects of the ensemble members’ structure, and have potential applications for future forecasting efforts. The adjusted best member is a better representative member, the Bayesian posterior mean is an improved structure-based weighted average, and the mixture density mean is an outline of the key structures in the ensemble. Each is shown to improve upon a simple arithmetic mean via quantitative comparison with observations.

    more » « less
  4. Abstract. High ice water content (HIWC) regions in tropical deep convective clouds, composed of high concentrations of small ice crystals, were not reproduced by Weather Research and Forecasting (WRF) model simulations at 1 km horizontal grid spacing using four different bulk microphysics schemes (i.e., the WRF single‐moment 6‐class microphysics scheme (WSM6), the Morrison scheme and the Predicted Particle Properties (P3) scheme with one- and two-ice options) for conditions encountered during the High Altitude Ice Crystals (HAIC) and HIWC experiment. Instead, overestimates of radar reflectivity and underestimates of ice number concentrations were realized. To explore formation mechanisms for large numbers of small ice crystals in tropical convection, a series of quasi-idealized WRF simulations varying the model resolution, aerosol profile, and representation of secondary ice production (SIP) processes are conducted based on an observed radiosonde released at Cayenne during the HAIC-HIWC field campaign. The P3 two-ice category configuration, which has two “free” ice categories to represent all ice-phase hydrometeors, is used. Regardless of the horizontal grid spacing or aerosol profile used, without including SIP processes the model produces total ice number concentrations about 2 orders of magnitude less than observed at −10 ∘C and about an order of magnitude less than observed at −30 ∘C but slightly overestimates the total ice number concentrations at −45 ∘C. Three simulations including one of three SIP mechanisms separately (i.e., the Hallett–Mossop mechanism, fragmentation during ice–ice collisions, and shattering of freezing droplets) also do not replicate observed HIWCs, with the results of the simulation including shattering of freezing droplets most closely resembling the observations. The simulation including all three SIP processes produces HIWC regions at all temperature levels, remarkably consistent with the observations in terms of ice number concentrations and radar reflectivity, which is not replicated using the original P3 two-ice category configuration. This simulation shows that primary ice production plays a key role in generating HIWC regions at temperatures <-40 ∘C, shattering of freezing droplets dominates ice particle production in HIWC regions at temperatures between −15 and 0 ∘C during the early stage of convection, and fragmentation during ice–ice collisions dominates at temperatures between −15 and 0 ∘C during the later stage of convection and at temperatures between −40 and −20 ∘C over the whole convection period. This study confirms the dominant role of SIP processes in the formation of numerous small crystals in HIWC regions. 
    more » « less
  5. An ensemble of 10 forecasts is produced for the 20 May 2013 Newcastle–Moore EF5 tornado and its parent supercell using a horizontal grid spacing of 50 m, nested within ensemble forecasts with 500-m horizontal grid spacing initialized via ensemble Kalman filter data assimilation of surface and radar observations. Tornadic circulations are predicted in all members, though the intensity, track, and longevity of the predicted tornado vary substantially among members. Overall, tornadoes in the ensemble forecasts persisted longer and moved to the northeast faster than the observed tornado. In total, 8 of the 10 ensemble members produce tornadoes with winds corresponding to EF2 intensity or greater, with maximum instantaneous near-surface horizontal wind speeds of up to 130 m s−1and pressure drops of up to 120 hPa; values similar to those reported in observational studies of intense tornadoes. The predicted intense tornadoes all acquire well-defined two-cell vortex structure, and exhibit features common in observed tornadic storms, including a weak-echo notch and low reflectivity within the mesocyclone. Ensemble-based probabilistic tornado forecasts based upon near-surface wind and/or vorticity fields at 10 m above the surface produce skillful forecasts of the tornado in terms of area under the relative operating characteristic curve, with probability swaths extending along and to the northeast of the observed tornado path. When probabilistic swaths of 0–3- and 2–5-km updraft helicity are compared to the swath of wind at 10 m above the surface exceeding 29 m s−1, a slight northwestward bias is present, although the pathlength, orientation, and the placement of minima and maxima show very strong agreement.

    more » « less