The marine-based West Antarctic Ice Sheet (WAIS) is currently retreating due to shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss of the WAIS. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in marine-based ice sheet extent during the late Neogene and Quaternary. Numerical models indicate a fundamental role for oceanic heat in controlling this variability over at least the past 20 My. Although evidence for past ice sheet variability has been collected in marginal settings, sedimentologic sequences from the outer continental shelf aremore »
Statistical Emulation of Ice-Sheet Model Simulations to Estimate Uncertainty in Future Antarctic Sea-Level Contributions
Observational estimates of Antarctic ice loss have accelerated in recent decades, and worst-case scenarios of modeling studies have suggested potentially catastrophic sea level rise (~2 meters) by the end of the century. However, modeled contributions to global mean sea level from the Antarctic ice-sheet (AIS) in the 21st century are highly uncertain, in part because ice-sheet model parameters are poorly constrained. Individual ice-sheet model runs are also deterministic and not computationally efficient enough to generate the continuous probability distributions required for incorporation into a holistic framework of probabilistic sea-level projections. To address these shortfalls, we statistically emulate an ice-sheet model using Gaussian Process (GP) regression. GP modeling is a non-parametric machine-learning technique which maps inputs (e.g. forcing or model parameters) to target outputs (e.g. sea-level contributions from the Antarctic ice-sheet) and has the inherent and important advantage that emulator uncertainty is explicitly quantified. We construct emulators for the last interglacial period and an RCP8.5 scenario, and separately for the western, eastern, and total AIS. Separate emulation of western and eastern AIS is important because their evolutions and physical responses to climate forcing are distinct. The emulators are trained on 196 ensemble members for each scenario, composed by varying the parameters more »
- Award ID(s):
- 1664013
- Publication Date:
- NSF-PAR ID:
- 10113504
- Journal Name:
- AGU Fall Meeting
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The agreement reached at the 21st Conference of the Parties (COP21) of the United Nations Framework Conven- tion on Climate Change (UNFCC) is aimed at limiting the post-preindustrial rise in global mean temperature to less than 2 oC at the end of this century, and to promote further efforts to limit the warming to 1.5 oC. Here, we use a numerical ice sheet-shelf model, with physics tested and calibrated against modern and past ice-sheet behavior and coupled to highly resolved atmospheric and ocean components, to test the Antarctic Ice Sheet’s response to a range of future climate scenarios representing COP21more »
-
The West Antarctic Ice Sheet (WAIS) is largely marine based and thus highly sensitive to both climatic and oceanographic changes. Therefore, the WAIS has likely had a very dynamic history over the last several million years. A complete collapse of the WAIS would result in a global sea level rise of 3.3–4.3 m, yet the world’s scientific community is not able to predict its future behavior. Moreover, knowledge about past behavior of the WAIS is poor, in particular during geological times with climatic conditions similar to those expected for the near and distant future. Reconstructions and quantifications of partial ormore »
-
Observations from the past several decades indicate that the Southern Ocean is warming significantly and that Southern Hemisphere westerly winds have migrated southward and strengthened due to increasing atmospheric CO2 concentrations and/or ozone depletion. These changes have been linked to thinning of Antarctic ice shelves and marine terminating glaciers. Results from geologic drilling on Antarctica’s continental margins show late Neogene marine-based ice sheet variability, and numerical models indicate a fundamental role for oceanic heat in controlling this variability over at least the past 20 My. Although evidence for past ice sheet variability has been observed in marginal settings, sedimentological sequencesmore »
-
null (Ed.)Thwaites Glacier is the most rapidly changing outlet of the West Antarctic Ice Sheet and adds large uncertainty to 21st century sea-level rise predictions. Here, we present the first direct observations of ocean temperature, salinity, and oxygen beneath Thwaites Ice Shelf front, collected by an autonomous underwater vehicle. On the basis of these data, pathways and modification of water flowing into the cavity are identified. Deep water underneath the central ice shelf derives from a previously underestimated eastern branch of warm water entering the cavity from Pine Island Bay. Inflow of warm and outflow of melt-enriched waters are identified inmore »