skip to main content


Title: A Paper-Based Biological Solar Cell

A merged system incorporating paperfluidics and papertronics has recently emerged as a simple, single-use, low-cost paradigm for disposable point-of-care (POC) diagnostic applications. Stand-alone and self-sustained paper-based systems are essential to providing effective and lifesaving treatments in resource-constrained environments. Therefore, a realistic and accessible power source is required for actual paper-based POC systems as their diagnostic performance and portability rely significantly on power availability. Among many paper-based batteries and energy storage devices, paper-based microbial fuel cells have attracted much attention because bacteria can harvest electricity from any type of organic matter that is readily available in those challenging regions. However, the promise of this technology has not been translated into practical power applications because of its short power duration, which is not enough to fully operate those systems for a relatively long period. In this work, we for the first time demonstrate a simple and long-lasting paper-based biological solar cell that uses photosynthetic bacteria as biocatalysts. The bacterial photosynthesis and respiration continuously and self-sustainably generate power by converting light energy into electricity. With a highly porous and conductive anode and an innovative solid-state cathode, the biological solar cell built upon the paper substrates generated the maximum current and power density of 65 µA/cm2and 10.7 µW/cm2, respectively, which are considerably greater than those of conventional micro-sized biological solar cells. Furthermore, photosynthetic bacteria in a 3-D volumetric chamber made of a stack of papers provided stable and long-lasting electricity for more than 5 h, while electrical current from the heterotrophic culture on 2-D paper dramatically decreased within several minutes.

 
more » « less
Award ID(s):
1703394
NSF-PAR ID:
10113681
Author(s) / Creator(s):
 ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
SLAS TECHNOLOGY: Translating Life Sciences Innovation
Volume:
25
Issue:
1
ISSN:
2472-6303
Page Range / eLocation ID:
p. 75-81
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less
  2. Abstract

    Functioning ingestible capsules offer tremendous promise for a plethora of diagnostic and therapeutic applications. However, the absence of realistic and practical power solutions has greatly hindered the development of ingestible electronics. Microbial fuel cells (MFCs) hold great potential as power sources for such devices as the small intestinal environment maintains a steady internal temperature and a neutral pH. Those conditions and the constant supply of nutrient‐rich organics are a perfect environment to generate long‐lasting power. Although previous small‐scale MFCs have demonstrated many promising applications, little is known about the potential for generating power in the human gut environment. Here, this work reports the design and operation of a microbial biobattery capsule for ingestible applications. DormantBacillus subtilisendospores are a storable anodic biocatalyst that will provide on‐demand power when revived by nutrient‐rich intestinal fluids. A conductive, porous, poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate hydrogel anode enables superior electrical performance in what is the world's smallest MFC. Moreover, an oxygen‐rich cathode maintains its effective cathodic capability even in the oxygen‐deficit intestinal environment. As a proof‐of‐concept demonstration in stimulated intestinal fluid, the biobattery capsule produces a current density of 470 µA cm−2and a power density of 98 µW cm−2, ensuring its practical efficacy as a novel and sole power source for ingestible applications in the small intestine.

     
    more » « less
  3. Electrocatalytic upgrading of biomass-derived feedstocks driven by renewable electricity offers a greener way to reduce the global carbon footprint associated with the production of value-added chemicals. Paired electrolysis is an emerging platform for cogenerating high-valued chemicals from both the cathode and anode, potentially powered by renewable electricity from wind or solar sources. By pairing with an anodic biomass oxidation upgrading reaction, the elimination of the sluggish and less valuable water oxidation increases flow cell productivity and efficiency. In this presentation, we report our research progress on paired electrolsysis of HMF to production of higher valued chemicals in electrochemical flow cells. We first prepared an oxide-derived Ag (OD-Ag) electrode with high activity and up to 98.2% selectivity for the ECH of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF), and such efficient conversion was achieved in a three-electrode flow cell. The excellent BHMF selectivity was maintained over a broad potential range with long-term operational stability. In HMF-to-BHMF paired with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated HMF-to-FDCA conversion, a markedly reduced cell voltage from ~7.5 V to ~2.0 V was observed by transferring the electrolysis from the H-type cell to the flow cell, corresponding to more than four-fold increase in energy efficiency in operation at 10 mA. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA. Next, we have demonstrated membrane electrode assembly (MEA)-based flow cells for the paired electrolysis of 5-(hydroxymethyl)furfural (HMF) paired electrolysis to bis(hydroxymethyl)furan (BHMF) and 2,5-furandicarboxylic acid (FDCA). In this work, the oxygen evolution reaction (OER) was substituted by TEMPO-mediated HMF oxidation, dropping the cell voltage was from 1.4 V to 0.7 V at a current density of 1.0 mA cm−2. A minimized cell voltage of ~1.5 V for a continuous 24 h co-electrolysis of HMF was then achieved at the current density of 2 mA cm−2(constant current of 10 mA), leading to the highest combined faradaic efficiency (FE) of 139% for HMF-to-BHMF and HMF-to-FDCA. A NiFe oxide catalyst on carbon cloth further replaced the anodic TEMPO mediator for HMF paired electrolysis in a pH-asymmetric flow cell. We envision renewable electrical energy can potentially drive the whole process, thus providing a sustainable avenue towards distributed, scalable, and energy-efficient electrosynthesis. 
    more » « less
  4. Abstract Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm 2 ) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments. 
    more » « less
  5. Abstract

    The fabrication and performance of a flexible and stretchable microbial fuel cell (MFC) monolithically integrated into a single sheet of textile substrate are reported. The single‐layer textile MFC usesPseudomonas aeruginosa(PAO1) as a biocatalyst to produce a maximum power of 6.4 µW cm−2and current density of 52 µA cm−2, which are substantially higher than previous textile‐MFCs and are similar to other flexible paper‐based MFCs. The textile MFC demonstrates a stable performance with repeated stretching and twisting cycles. The membrane‐less single‐chamber configuration drastically simplifies the fabrication and improves the performance of the MFC. A conductive and hydrophilic anode in a 3D fabric microchamber maximizes bacterial electricity generation from a liquid environment and a silver oxide/silver solid‐state cathode reduces cathodic overpotential for fast catalytic reaction. A simple batch fabrication approach simultaneously constructs 35 individual devices, which will revolutionize the mass production of textile MFCs. This stretchable and twistable power device printed directly onto a single textile substrate can establish a standardized platform for textile‐based biobatteries and will be potentially integrated into wearable electronics in the future.

     
    more » « less