skip to main content

This content will become publicly available on October 13, 2024

Title: Simultaneous Enhancement of Efficiency and Operational‐Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening

The combined effects of compact TiO2(c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2(m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational‐stability of solar cells based on metal‐halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c‐TiO2without SAM to m‐TiO2with SAM. This is attributed to the synergistic effect of the m‐TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine‐terminated silane SAM. The combination of m‐TiO2and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power‐conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2active areas, respectively. These PSCs also have exceptionally long operational‐stability lives: extrapolatedT80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2active areas, respectively.Postmortemcharacterization and analyses of the operational‐stability‐tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational‐stability.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two key interfaces in flexible perovskite solar cells (f‐PSCs) are mechanically reinforced simultaneously: one between the electron‐transport layer (ETL) and the 3D metal‐halide perovskite (MHP) thin film using self‐assembled monolayer (SAM), and the other between the 3D‐MHP thin film and the hole‐transport layer (HTL) using an in situ grown low‐dimensional (LD) MHP capping layer. The interfacial mechanical properties are measured and modeled. This rational interface engineering results in the enhancement of not only the mechanical properties of both interfaces but also their optoelectronic properties holistically. As a result, the new class of dual‐interface‐reinforced f‐PSCs has an unprecedented combination of the following three important performance parameters: high power‐conversion efficiency (PCE) of 21.03% (with reduced hysteresis), improved operational stability of 1000 hT90(duration at 90% initial PCE retained), and enhanced mechanical reliability of 10 000 cyclesn88(number of bending cycles at 88% initial PCE retained). The scientific underpinnings of these synergistic enhancements are elucidated.

    more » « less
  2. Iodine-terminated self-assembled monolayer (I-SAM) was used in perovskite solar cells (PSCs) to achieve a 50% increase of adhesion toughness at the interface between the electron transport layer (ETL) and the halide perovskite thin film to enhance mechanical reliability. Treatment with I-SAM also increased the power conversion efficiency from 20.2% to 21.4%, reduced hysteresis, and improved operational stability with a projected T80 (time to 80% initial efficiency retained) increasing from ~700 hours to 4000 hours under 1-sun illumination and with continuous maximum power point tracking. Operational stability–tested PSC without SAMs revealed extensive irreversible morphological degradation at the ETL/perovskite interface, including voids formation and delamination, whereas PSCs with I-SAM exhibited minimal damage accumulation. This difference was attributed to a combination of a decrease in hydroxyl groups at the interface and the higher interfacial toughness.

    more » « less
  3. Abstract

    High‐performance tin‐lead perovskite solar cells (PSCs) are needed for all‐perovskite‐tandem solar cells. However, iodide related fast photodegradation severely limits the operational stability of Sn‐Pb perovskites despite the demonstrated high efficiency and thermal stability. Herein, this work employs an alkylammonium pseudo‐halogen additive to enhance the power conversion efficiency (PCE) and photostability of methylammonium (MA)‐free, Sn‐Pb PSCs. Density functional theory (DFT) calculations reveal that the pseudo‐halogen tetrafluoroborate (BF4) has strong binding capacity with metal ions (Sn2+/Pb2+) in the Sn‐Pb perovskite lattice, which lowers iodine vacancy formation. Upon combining BF4with an octylammonium (OA+) cation, the PCE of the device with a built‐in light‐scattering layer is boosted to 23.7%, which represents a new record for Sn‐Pb PSCs. The improved efficiency benefits from the suppressed defect density. Under continuous 1 sun illumination, the OABF4embodied PSCs show slower generation of interstitial iodides and iodine, which greatly improves the device photostability under open‐circuit condition. Moreover, the device based on OABF4retains 88% of the initial PCE for 1000 h under the maximum‐power‐point tracking (MPPT) without cooling.

    more » « less
  4. Abstract

    Flexible perovskite solar cells (f‐PSCs) have attracted great attention due to their promising commercial prospects. However, the performance off‐PSCs is generally worse than that of their rigid counterparts. Herein, it is found that the unsatisfactory performance of planar heterojunction (PHJ)f‐PSCs can be attributed to the undesirable morphology of electron transport layer (ETL), which results from the rough surface of the flexible substrate. Precise control over the thickness and morphology of ETL tin dioxide (SnO2) not only reduces the reflectance of the indium tin oxide (ITO) on polyethylene 2,6‐naphthalate (PEN) substrate and enhances photon collection, but also decreases the trap‐state densities of perovskite films and the charge transfer resistance, leading to a great enhancement of device performance. Consequently, thef‐PSCs, with a structure of PEN/ITO/SnO2/perovskite/Spiro‐OMeTAD/Ag, exhibit a power conversion efficiency (PCE) up to 19.51% and a steady output of 19.01%. Furthermore, thef‐PSCs show a robust bending resistance and maintain about 95% of initial PCE after 6000 bending cycles at a bending radius of 8 mm, and they present an outstanding long‐term stability and retain about 90% of the initial performance after >1000 h storage in air (10% relative humidity) without encapsulation.

    more » « less
  5. Abstract

    Molecular I2can be produced from iodide‐based lead perovskites under thermal stress; triiodide, I3, is formed from this I2and I. Triiodide attacks protic cation MA+‐ or FA+‐based lead halide perovskites (MA+, methylammonium; FA+, formamidinium) as explicated through solution‐based nuclear magnetic resonance (NMR) studies: triiodide has strong hydrogen‐bonding affinity for MA+or FA+, which leads to their deprotonation and perovskite decomposition. Triiodide is a catalyst for this decomposition that can be obviated through perovskite surface treatment with thiol reducing agents. In contrast to methods using thiol incorporation into perovskite precursor solutions, no penetration of the thiol into the bulk perovskite is observed, yet its surface application stabilizes the perovskite against triiodide‐mediated thermal stress. Thiol applied to the interface between FAPbI3and Spiro‐OMeTAD (“Spiro”) prevents oxidized iodine species penetration into Spiro and thus preserves its hole‐transport efficacy. Surface‐applied thiol affects the perovskite work function; it ameliorates hole injection into the Spiro overlayer, thus improving device performance. It helps to increase interfacial adhesion (“wetting”): fewer voids are observed at the Spiro/perovskite interface if thiols are applied. Perovskite solar cells (PSCs) incorporating interfacial thiol treatment maintain over 80% of their initial power conversion efficiency (PCE) after 300 h of 85 °C thermal stress.

    more » « less