skip to main content


Title: Unearthing the factors governing site specific rates of electronic excitations in multicomponent plasmonic systems and catalysts
We use experimental and computational studies of core–shell metal–semiconductor and metal–molecule systems to investigate the mechanism of energy flow and energetic charge carrier generation in multicomponent plasmonic systems. We demonstrate that the rates of plasmon decay through the formation of energetic charge carriers are governed by two factors: (1) the intensity of the local plasmon induced electric fields at a specific location in the multicomponent nanostructure, and (2) the availability of direct, momentum conserved electronic excitations in the material located in that specific location. We propose a unifying physical framework that describes the flow of energy in all multicomponent plasmonic systems and leads us towards molecular control of the energy flow and excited charge carrier generation in these systems.  more » « less
Award ID(s):
1702471 1800197
NSF-PAR ID:
10113732
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Faraday Discussions
Volume:
214
ISSN:
1359-6640
Page Range / eLocation ID:
441 to 453
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electronically doped metal oxide nanocrystals exhibit tunable infrared localized surface plasmon resonances (LSPRs). Despite the many benefits of IR resonant LSPRs in solution processable nanocrystals, the ways in which the electronic structure of the host semiconductor material impact metal oxide LSPRs are still being investigated. Semiconductors provide an alternative dielectric environment than metallically bonded solids, such as noble metals, which can impact how these materials undergo electronic relaxation following photoexcitation. Understanding these differences is key to developing applications that take advantage of the unique optical and electronic properties offered by plasmonic metal oxide NCs. Here, we use the two-temperature model in conjunction with femtosecond transient absorption experiments to describe how the internal temperature of two representative metal oxide nanocrystal systems, cubic WO 3−x and bixbyite Sn-doped In 2 O 3 , change following LSPR excitation. We find that the low free carrier concentrations of metal oxide NCs lead to less efficient heat generation as compared to metallic nanocrystals such as Ag. This suggests that metal oxide NCs may be ideal for applications wherein untoward heat generation may disrupt the application's overall performance, such as solar energy conversion and photonic gating. 
    more » « less
  2. Surface plasmon mediated hot-carrier generation is utilized widely for the manipulation of electron–photon interactions in many types of optoelectronic devices including solar cells, photodiodes, and optical modulators. A diversity of plasmonic systems such as nanoparticles, resonators, and waveguides has been introduced to enhance hot-carrier generation; however, the impact of propagating surface plasmons on hot-carrier lifetime has not been clearly demonstrated. Here, we systematically study the hot-carrier relaxation in thin film gold (Au) samples under surface plasmon coupling with the Kretschmann configuration. We observe that the locally confined electric field at the surface of the metal significantly affects the hot-carrier distribution and electron temperature, which results in a slowing of the hot electrons’ relaxation time, regardless of the average value of the absorbed power in the Au thin film. This result could be extended to other plasmonic nanostructures, enabling the control of hot-carrier lifetimes throughout the optical frequency range.

     
    more » « less
  3. null (Ed.)
    Hot-carriers in plasmonic nanostructures, generated via plasmon decay, play key roles in applications like photocatalysis and in photodetectors that circumvent band-gap limitations. However, direct experimental quantification of steady-state energy distributions of hot-carriers in nanostructures has so far been lacking. We present transport measurements from single-molecule junctions, created by trapping suitably chosen single molecules between an ultra-thin gold film supporting surface plasmon polaritons and a scanning probe tip, that can provide quantification of plasmonic hot-carrier distributions. Our results show that Landau damping is the dominant physical mechanism of hot-carrier generation in nanoscale systems with strong confinement. The technique developed in this work will enable quantification of plasmonic hot-carrier distributions in nanophotonic and plasmonic devices. 
    more » « less
  4. Over the last century, quantum theories have revolutionized our understanding of material properties. One of the most striking quantum phenomena occurring in heterogeneous media is the quantum tunneling effect, where carriers can tunnel through potential barriers even if the barrier height exceeds the carrier energy. Interestingly, the tunneling process can be accompanied by the absorption or emission of light. In most tunneling junctions made of noble metal electrodes, these optical phenomena are governed by plasmonic modes, i.e., light-driven collective oscillations of surface electrons. In the emission process, plasmon excitation via inelastic tunneling electrons can improve the efficiency of photon generation, resulting in bright nanoscale optical sources. On the other hand, the incident light can affect the tunneling behavior of plasmonic junctions as well, leading to phenomena such as optical rectification and induced photocurrent. Thus, plasmonic tunneling junctions provide a rich platform for investigating light–matter interactions, paving the way for various applications, including nanoscale light sources, sensors, and chemical reactors. In this paper, we will introduce recent research progress and promising applications based on plasmonic tunneling junctions. 
    more » « less
  5. Abstract

    Electrochemical reduction of carbon dioxide (CO2) typically suffers from low selectivity and poor reaction rates that necessitate high overpotentials, which impede its possible application for CO2capture, sequestration, or carbon‐based fuel production. New strategies to address these issues include the utilization of photoexcited charge carriers to overcome activation barriers for reactions that produce desirable products. This study demonstrates surface‐plasmon‐enhanced photoelectrochemical reduction of CO2and nitrate (NO3) on silver nanostructured electrodes. The observed photocurrent likely originates from a resonant charge transfer between the photogenerated plasmonic hot electrons and the lowest unoccupied molecular orbital (MO) acceptor energy levels of adsorbed CO2, NO3, or their reductive intermediates. The observed differences in the resonant effects at the Ag electrode with respect to electrode potential and photon energy for CO2versus NO3reduction suggest that plasmonic hot‐carriers interact selectively with specific MO acceptor energy levels of adsorbed surface species such as CO2, NO3, or their reductive intermediates. This unique plasmon‐assisted charge generation and transfer mechanism can be used to increase yield, efficiency, and selectivity of various photoelectrochemical processes.

     
    more » « less