skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Current Flow Group Closeness Centrality for Complex Networks?
Current flow closeness centrality (CFCC) has a better discriminating ability than the ordinary closeness centrality based on shortest paths. In this paper, we extend this notion to a group of vertices in a weighted graph, and then study the problem of finding a subset S of k vertices to maximize its CFCC C(S), both theoretically and experimentally. We show that the problem is NP-hard, but propose two greedy algorithms for minimizing the reciprocal of C(S) with provable guarantees using the monotoncity and supermodularity. The first is a deterministic algorithm with an approximation factor (1−kk−1⋅1e) and cubic running time; while the second is a randomized algorithm with a (1−kk−1⋅1e−ϵ)-approximation and nearly-linear running time for any ϵ>0. Extensive experiments on model and real networks demonstrate that our algorithms are effective and efficient, with the second algorithm being scalable to massive networks with more than a million vertices.  more » « less
Award ID(s):
1637566
PAR ID:
10113894
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019
Page Range / eLocation ID:
961 to 971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we evaluate the effect of noise on community scoring and centrality-based parameters with respect to two different aspects of network analysis: (i) sensitivity, that is how the parameter value changes as edges are removed and (ii) reliability in the context of message spreading, that is how the time taken to broadcast a message changes as edges are removed. Our experiments on synthetic and real-world networks and three different noise models demonstrate that for both the aspects over all networks and all noise models, permanence qualifies as the most effective metric. For the sensitivity experiments closeness centrality is a close second. For the message spreading experiments, closeness and betweenness centrality based initiator selection closely competes with permanence. This is because permanence has a dual characteristic where the cumulative permanence over all vertices is sensitive to noise but the ids of the top-rank vertices, which are used to find seeds during message spreading remain relatively stable under noise. 
    more » « less
  2. We consider the maximum vertex-weighted matching problem (MVM), in which non-negative weights are assigned to the vertices of a graph, and the weight of a matching is the sum of the weights of the matched vertices. Although exact algorithms for MVM are faster than exact algorithms for the maximum edge-weighted matching problem, there are graphs on which these exact algorithms could take hundreds of hours. For a natural number k, we design a k/(k + 1)approximation algorithm for MVM on non-bipartite graphs that updates the matching along certain short paths in the graph: either augmenting paths of length at most 2k + 1 or weight-increasing paths of length at most 2k. The choice of k = 2 leads to a 2/3-approximation algorithm that computes nearly optimal weights fast. This algorithm could be initialized with a 2/3-approximate maximum cardinality matching to reduce its runtime in practice. A 1/2-approximation algorithm may be obtained using k = 1, which is faster than the 2/3-approximation algorithm but it computes lower weights. The 2/3-approximation algorithm has time complexity O(Δ2m) while the time complexity of the 1/2-approximation algorithm is O(Δm), where m is the number of edges and Δ is the maximum degree of a vertex. Results from our serial implementations show that on average the 1/2-approximation algorithm runs faster than the Suitor algorithm (currently the fastest 1/2-approximation algorithm) while the 2/3-approximation algorithm runs as fast as the Suitor algorithm but obtains higher weights for the matching. One advantage of the proposed algorithms is that they are well-suited for parallel implementation since they can process vertices to match in any order. The 1/2- and 2/3-approximation algorithms have been implemented on a shared memory parallel computer, and both approximation algorithms obtain good speedups, while the former algorithm runs faster on average than the parallel Suitor algorithm. Care is needed to design the parallel algorithm to avoid cyclic waits, and we prove that it is live-lock free. 
    more » « less
  3. We consider the following general network design problem. The input is an asymmetric metric (V, c), root [Formula: see text], monotone submodular function [Formula: see text], and budget B. The goal is to find an r-rooted arborescence T of cost at most B that maximizes f(T). Our main result is a simple quasi-polynomial time [Formula: see text]-approximation algorithm for this problem, in which [Formula: see text] is the number of vertices in an optimal solution. As a consequence, we obtain an [Formula: see text]-approximation algorithm for directed (polymatroid) Steiner tree in quasi-polynomial time. We also extend our main result to a setting with additional length bounds at vertices, which leads to improved [Formula: see text]-approximation algorithms for the single-source buy-at-bulk and priority Steiner tree problems. For the usual directed Steiner tree problem, our result matches the best previous approximation ratio but improves significantly on the running time. For polymatroid Steiner tree and single-source buy-at-bulk, our result improves prior approximation ratios by a logarithmic factor. For directed priority Steiner tree, our result seems to be the first nontrivial approximation ratio. Under certain complexity assumptions, our approximation ratios are the best possible (up to constant factors). 
    more » « less
  4. We consider the following general network design problem on directed graphs. The input is an asymmetric metric (V, c), root r in V, monotone submodular function f and budget B. The goal is to find an r-rooted arborescence T of cost at most B that maximizes f(T). Our main result is a very simple quasi-polynomial time -approximation algorithm for this problem, where k ≤ |V| is the number of vertices in an optimal solution. To the best of our knowledge, this is the first non-trivial approximation ratio for this problem. As a consequence we obtain an O(log^2 k / loglog k) approximation algorithm for directed (polymatroid) Steiner tree in quasi-polynomial time. We also extend our main result to a setting with additional length bounds at vertices, which leads to improved approximation algorithms for the single-source buy-at-bulk and priority Steiner tree problems. For the usual directed Steiner tree problem, our result matches the best previous approximation ratio, but improves significantly on the running time. For polymatroid Steiner tree and single-source buy-at-bulk, our result improves prior approximation ratios by a logarithmic factor. For directed priority Steiner tree, our result seems to be the first non-trivial approximation ratio. Under certain complexity assumptions, our approximation ratios are best possible (up to constant factors). 
    more » « less
  5. Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a dynamic setting, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [19]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of (1 +ϵ)r2 and an update time of O(poly(r, log n)), where r denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (near-optimal) approximation ratio of (1 +ϵ) that is independent of r, and a similar update time of O(poly(r, log n)). It is the first (1 +ϵ)-approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on large-scale, real-world data-sets. Our algorithm significantly outperforms the state of the art [19] both in terms of accuracy and efficiency. 
    more » « less