skip to main content


Title: Sensitivity and Reliability in Incomplete Networks: Centrality Metrics to Community Scoring Functions
In this paper we evaluate the effect of noise on community scoring and centrality-based parameters with respect to two different aspects of network analysis: (i) sensitivity, that is how the parameter value changes as edges are removed and (ii) reliability in the context of message spreading, that is how the time taken to broadcast a message changes as edges are removed. Our experiments on synthetic and real-world networks and three different noise models demonstrate that for both the aspects over all networks and all noise models, permanence qualifies as the most effective metric. For the sensitivity experiments closeness centrality is a close second. For the message spreading experiments, closeness and betweenness centrality based initiator selection closely competes with permanence. This is because permanence has a dual characteristic where the cumulative permanence over all vertices is sensitive to noise but the ids of the top-rank vertices, which are used to find seeds during message spreading remain relatively stable under noise.  more » « less
Award ID(s):
1533881
NSF-PAR ID:
10017954
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Current flow closeness centrality (CFCC) has a better discriminating ability than the ordinary closeness centrality based on shortest paths. In this paper, we extend this notion to a group of vertices in a weighted graph, and then study the problem of finding a subset S of k vertices to maximize its CFCC C(S), both theoretically and experimentally. We show that the problem is NP-hard, but propose two greedy algorithms for minimizing the reciprocal of C(S) with provable guarantees using the monotoncity and supermodularity. The first is a deterministic algorithm with an approximation factor (1−kk−1⋅1e) and cubic running time; while the second is a randomized algorithm with a (1−kk−1⋅1e−ϵ)-approximation and nearly-linear running time for any ϵ>0. Extensive experiments on model and real networks demonstrate that our algorithms are effective and efficient, with the second algorithm being scalable to massive networks with more than a million vertices. 
    more » « less
  2. Abstract We define a bridge node to be a node whose neighbor nodes are sparsely connected to each other and are likely to be part of different components if the node is removed from the network. We propose a computationally light neighborhood-based bridge node centrality (NBNC) tuple that could be used to identify the bridge nodes of a network as well as rank the nodes in a network on the basis of their topological position to function as bridge nodes. The NBNC tuple for a node is asynchronously computed on the basis of the neighborhood graph of the node that comprises of the neighbors of the node as vertices and the links connecting the neighbors as edges. The NBNC tuple for a node has three entries: the number of components in the neighborhood graph of the node, the algebraic connectivity ratio of the neighborhood graph of the node and the number of neighbors of the node. We analyze a suite of 60 complex real-world networks and evaluate the computational lightness, effectiveness, efficiency/accuracy and uniqueness of the NBNC tuple vis-a-vis the existing bridgeness related centrality metrics and the Louvain community detection algorithm. 
    more » « less
  3. This paper describes a group-level classification of 14 patients with prefrontal cortex (pFC) lesions from 20 healthy controls using multi-layer graph convolutional networks (GCN) with features inferred from the scalp EEG recorded from the encoding phase of working memory (WM) trials. We first construct undirected and directed graphs to represent the WM encoding for each trial for each subject using distance correlation- based functional connectivity measures and differential directed information-based effective connectivity measures, respectively. Centrality measures of betweenness centrality, eigenvector centrality, and closeness centrality are inferred for each of the 64 channels from the brain connectivity. Along with the three centrality measures, each graph uses the relative band powers in the five frequency bands - delta, theta, alpha, beta, and gamma- as node features. The summarized graph representation is learned using two layers of GCN followed by mean pooling, and fully connected layers are used for classification. The final class label for a subject is decided using majority voting based on the results from all the subject's trials. The GCN-based model can correctly classify 28 of the 34 subjects (82.35% accuracy) with undirected edges represented by functional connectivity measure of distance correlation and classify all 34 subjects (100% accuracy) with directed edges characterized by effective connectivity measure of differential directed information. 
    more » « less
  4. null (Ed.)
    Abstract This paper introduces the notions of chained and semi-chained graphs. The chain of a graph, when existent, refines the notion of bipartivity and conveys important structural information. Also the notion of a center vertex $$v_c$$ v c is introduced. It is a vertex, whose sum of p powers of distances to all other vertices in the graph is minimal, where the distance between a pair of vertices $$\{v_c,v\}$$ { v c , v } is measured by the minimal number of edges that have to be traversed to go from $$v_c$$ v c to v . This concept extends the definition of closeness centrality. Applications in which the center node is important include information transmission and city planning. Algorithms for the identification of approximate central nodes are provided and computed examples are presented. 
    more » « less
  5. null (Ed.)
    Abstract Understanding the mechanisms by which neurons create or suppress connections to enable communication in brain-derived neuronal cultures can inform how learning, cognition and creative behavior emerge. While prior studies have shown that neuronal cultures possess self-organizing criticality properties, we further demonstrate that in vitro brain-derived neuronal cultures exhibit a self-optimization phenomenon. More precisely, we analyze the multiscale neural growth data obtained from label-free quantitative microscopic imaging experiments and reconstruct the in vitro neuronal culture networks (microscale) and neuronal culture cluster networks (mesoscale). We investigate the structure and evolution of neuronal culture networks and neuronal culture cluster networks by estimating the importance of each network node and their information flow. By analyzing the degree-, closeness-, and betweenness-centrality, the node-to-node degree distribution (informing on neuronal interconnection phenomena), the clustering coefficient/transitivity (assessing the “small-world” properties), and the multifractal spectrum, we demonstrate that murine neurons exhibit self-optimizing behavior over time with topological characteristics distinct from existing complex network models. The time-evolving interconnection among murine neurons optimizes the network information flow, network robustness, and self-organization degree. These findings have complex implications for modeling neuronal cultures and potentially on how to design biological inspired artificial intelligence. 
    more » « less