skip to main content


Title: Investigation of the physiological differences in the immersive virtual reality environment and real indoor environment: Focused on skin temperature and thermal sensation
The goal of this research is to investigate and determine whether the effect of an IVE condition on an occupant's environmental sensations and physiological responses is different from the effect of a real environmental condition in the indoor environment. The research included a series of human subject experiments, with 16 participants in an environmental chamber. A thermal quality condition was selected as a primary environmental parameter, based on current IEQ-relevant studies. While the ambient thermal condition was gradually changed from 20 °C to 30 °C, the participants were asked to report their overall thermal sensations. Their skin temperatures were also continuously measured to collect physiological signal information in real time. The results of this experimental study revealed that the participants mostly generated higher skin temperature at the selected seven skin areas. Their reported thermal sensations were significantly higher in the IVE condition, than in the real environment, showing a difference of 12%.  more » « less
Award ID(s):
1707068
NSF-PAR ID:
10114040
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Building and environment
Volume:
154
ISSN:
0360-1323
Page Range / eLocation ID:
44-54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent studies have established immersive virtual environments (IVEs) as promising tools for studying human thermal states and human–building interactions. One advantage of using immersive virtual environments is that experiments or data collection can be conducted at any time of the year. However, previous studies have confirmed the potential impact of outdoor temperature variations, such as seasonal variations on human thermal sensation. To the best of our knowledge, no study has looked into the potential impact of variations in outdoor temperatures on experiments using IVE. Thus, this study aimed to determine if different outdoor temperature conditions affected the thermal states in experiments using IVEs. Experiments were conducted using a head mounted display (HMD) in a climate chamber, and the data was analyzed under three temperature ranges. A total of seventy-two people participated in the experiments conducted in two contrasting outdoor temperature conditions, i.e., cold and warm outdoor conditions. The in situ experiments conducted in two cases, i.e., cooling in warm outdoor conditions and heating in cold outdoor conditions, were used as a baseline. The baseline in-situ experiments were then compared with the IVE experiments conducted in four cases, i.e., cooling in warm and cold outdoor conditions and heating in warm and cold outdoor conditions. The selection of cooling in cold outdoor conditions and heating in warm outdoor conditions for IVE experiments is particularly for studying the impact of outdoor temperature variations. Results showed that under the experimental and outdoor temperature conditions, outdoor temperature variations in most cases did not impact the results of IVE experiments, i.e., IVE experiments can replicate a temperature environment for participants compared to the ones in the in situ experiments. In addition, the participant’s thermal sensation vote was found to be a reliable indicator between IVE and in situ settings in all studied conditions. A few significantly different cases were related to thermal comfort, thermal acceptability, and overall skin temperature. 
    more » « less
  2. Workers' performance in indoor offices can be greatly affected by the thermal condition of the environment. However, this effect can be difficult to quantify, especially when the thermal stress is a moderate increase or decrease in temperature and the work productivity cannot be directly measured. Subjects' high motivation to perform well under experimental conditions also causes difficulties in comparing their performance in different thermal environments. In order to overcome these limitations, this paper proposes a method to investigate the effect of the indoor thermal conditions on occupants' performance by studying occupants' mental workload measured by the electroencephalography (EEG) when they perform standardized cognitive tasks. An experiment integrating EEG mental workload measurement and cognitive tasks was implemented on 15 subjects. EEG data were collected while subjects were performing four cognitive tasks on computers. Based on previous studies, we propose a mental workload index calculated from the frontal theta and parietal alpha frequency band power. Within-subject comparisons were performed to investigate whether subjects' mental workload is statistically different under three different thermal environments, representing thermal sensations of slightly cool, neutral, and slightly warm. The results show that the effect of thermal environment varies across different individuals. By comparing the mental workload index among different thermal environments, we found that the slightly warm environment resulted in a relatively higher mental workload than the other two environments to achieve the same performance. The study provides promising insights into how the thermal environment influences occupants’ performance by affecting their mental workload from the neurophysiological perspective. 
    more » « less
  3. Identification and quantitative understanding of factors that influence occupant energy behavior and thermal state during the design phase are critical in supporting effective energy-efficient design. To achieve this, immersive virtual environments (IVEs) have recently shown potential as a tool to simulate occupant energy behaviors and collect context-dependent behavior data for buildings under design. On the other hand, prior models of occupant energy behaviors and thermal states used correlation-based approaches, which failed to capture the underlying causal interactions between the influencing factors and hence were unable to uncover the true causing factors. Therefore, in this study, the authors investigate the applicability of causal inference for identifying the causing factors of occupant/participant energy behavioral intentions and their thermal states in IVE condition and compare those results with the baseline in-situ condition. The energy behavioral intentions here are a proximal antecedent of actual energy behaviors. A set of experiments involving 72 human subjects were performed through the use of a head-mounted device (HMD) in a climate chamber. The subjects were exposed to three different step temperatures (cool, neutral, warm) under an IVE and a baseline in-situ condition. Participants' individual factors, behavioral factors, skin temperatures, virtual experience factors, thermal states (sensation, acceptability, comfort), and energy behavioral intentions were collected during the experiments. Structural causal models were learnt from data using the elicitation method in conjunction with the PC-Stable algorithm. The findings show that the causal inference framework is a potentially effective method for identifying causing factors of thermal states and energy behavioral intentions as well as quantifying their causal effects. In addition, the study shows that in IVE experiments, the participants' virtual experience factors such as their immersion, presence, and cybersickness were not the causing factors of thermal states and energy behavioral intentions. Furthermore, the study suggests that participants' behavioral factors such as their attitudes toward energy conservation and perceived behavioral control to conserve energy were the causing factors of their energy behavioral intentions. Also, the indoor temperature was a causing factor of general thermal sensation and overall skin temperature. The paper also discusses other findings, including discrepancies, limitations of the study, and recommendations for future studies. 
    more » « less
  4. Lighting is the most crucial factor impacting an occupants’ visual comfort in a building environment. However, most prevailing current lighting guidelines deriving from empirical values are designed primarily for paper-based tasks, rather than computer-based. In many cases, present guidelines have been reported that there is a limitation to meet the needs for a user’s new task types. Above all, existing technical tools also have a limited function to evaluate a user’s real-time visual perception which can be applied as an indicator to control a building lighting system. This research estimated each individual participant's visual sensations by analyzing pupil sizes and their change patterns since the human body have the physiological regulation ability which naturally minimizes the adverse effects of the surrounding environment on the human body. This study adopted a series of human subject experiments which were performed in an environmental chamber of USC. Based on a computer-based task which are most commonly performed in current offices, various ranges of ambient lighting parameters, including luminance (cd/m2), illuminance (lux), contrast ratio, and UGR, were generated and controlled while each subject’s pupil sizes were recorded. The experimental result data were statistically analyzed to identify a relationship between human visual sensations, lighting parameters, and also pupil sizes by ethnic origin and myopia condition. The research outcomes showed the potential use of pupil sizes for estimating an individual’s visual sensation, and confirmed the principle as an applicable technology to integrate an environmental design and control system with the help of a real-time sensing device. 
    more » « less
  5. This study presents a vision-based approach that employs RGB video images as the sole source for inferring thermoregulation states in the human body in response to thermal condition variations in indoor environments. The primary objective is to contribute to our envisioned thermoregulation-based HVAC control that leverages actual thermal demands from end-users’ thermoregulation states for increased energy efficiency. Given that the envisioned control system calls for measurement techniques under four constraints of non-intrusiveness, applicability, sensitivity, and ubiquity (i.e., feasibility and scalability), this study investigated the potentials of ubiquitously obtainable RGB video images (through webcams or smartphones). Using photoplethysmography(PPG), a well-known optical technique for measuring blood volume changes in the microvascular bed of skin, we have leveraged the mechanism of blood flow control to the skin surface (blood vessels' dilation and constriction)for heat dissipation regulations, reflected in PPG signal's amplitude. Given the subtle variations of PPG signals and their susceptibility to noise, we proposed a framework that uses a combination of independent component analysis and adaptive filtering to reduce unwanted and in-band artifacts while preserving the amplitude information of PPG signals that indicates thermophysiological states. The framework was experimentally evaluated using transient thermal conditions to account for applicability and sensitivity attributes. Therefore, without considering an acclimation time for stabilized thermoregulation states, human subjects were exposed to varying temperatures (∼20–30 °C) while reporting their thermal sensations. In total, for 10 human subjects out of 15, a positive correlation between vision-based indicators, skin temperature, and thermal sensations were observed demonstrating promising potential in inferring thermal sensations of occupants with sufficient sensitivity 
    more » « less