skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Validation of Anti-Collision Protocols for RFID Sensor Networks
Currently, there is an increasing interest in the use of RFID systems with passive or battery-less tags with sensors incorporated, also known as computational RFID (CRFID) systems. These passive tags use the reader signal to power up their microcontroller and an attached sensor. Following the current standard EPC C1G2, the reader must identify the tag (receive the tag's identification code) prior to receive data from its sensor. In a typical RFID scenario, several sensor tags share the reader interrogation zone, and during their identification process, their responses often collide, increasing their identification time. Therefore, RFID application developers must be mindful of tag anti-collision protocols when dealing with CRFID tags in dense RFID sensor networks. So far, significant effort has been invested in simulation-based analysis of the performance of anti-collision protocols regarding the tags identification time. However, no one has explored the experimental performance of anti-collision protocols in an RFID sensor network using CRFID. This paper: (i) demonstrates that the impact of one tag identification time over the total time required to read one sensor data from that same tag is very significant, and (ii) presents an UHF-SDR RFID system which validates the improvement of FuzzyQ, a fast anticollision protocol, in relation to the protocol used in the current RFID standard.  more » « less
Award ID(s):
1823148
PAR ID:
10114058
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2018 6th International EURASIP Workshop on RFID Technology (EURFID)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Radio frequency identification (RFID) is a technology for automated identification of objects and people. RFID technology is expected to find extensive use in applications related to the Internet of Things, and in particular applications of Internet of Battlefield Things. Of particular interest are passive RFID tags due to a number of their salient advantages. Such tags, lacking energy sources of their own, use backscattering of the power of an RF source (a reader) to communicate. Recently, passive RFID tag-to-tag (T2T) communication has been demonstrated, via which tags can directly communicate with each other and share information. This opens the possibility of building a Network of Tags (NeTa), in which the passive tags communicate among themselves to perform data processing functions. Among possible applications of NeTa are monitoring services in hard-to-reach locations. As an essential step toward implementation of NeTa, we consider a novel multi-hop network architecture; in particular, with the proposed novel turbo backscattering operation, inter-tag distances can be significantly increased. Due to the interference among tags’ transmissions, one of the main technical challenges of implementing such the NeTa architecture is the routing protocol design. In this paper, we introduce a design of a routing protocol, which is based on a solution of a non-linear binary optimization problem. We study the performance of the proposed protocol and investigate impacts of several network factors, such as the tag density and the transmit power of the reader. 
    more » « less
  2. UHF RFID tags have been widely used for contactless inventory and tracking applications. One fundamental problem with RFID readers is their limited tag reading rate. Existing RFID readers (e.g., Impinj Speedway) can read about 35 tags per second in a read zone, which is far from enough for many applications. In this paper, we present the first-of-its-kind RFID reader (mReader), which borrows the idea of multi-user MIMO (MU-MIMO) from cellular networks to enable concurrent multi-tag reading in passive RFID systems. mReader is equipped with multiple antennas for implicit beamforming in downlink transmissions. It is enabled by three key techniques: uplink collision recovery, transition-based channel estimation, and zero-overhead channel calibration. In addition, mReader employs a Q-value adaptation algorithm for medium access control to maximize its tag reading rate. We have built a prototype of mReader on USRP X310 and demonstrated for the first time that a two-antenna reader can read two commercial off-the-shelf (COTS) tags simultaneously. Numerical results further show that mReader can improve the tag reading rate by 45% compared to existing RFID readers. 
    more » « less
  3. RFID technologies are making their way into numerous applications, including inventory management, supply chain, product tracking, transportation, logistics, etc. One important application is to automatically detect anomalies in RFID systems, such as missing tags, unknown tags, or cloned tags due to theft, management error, or targeted attacks. Existing solutions are all designed to detect a certain type of RFID anomalies, but lack a general functionality for detecting different types of anomalies. This paper attempts to propose a general framework for anomaly detection in RFID systems, thereby reducing the complexity for readers and tags to implement different anomaly-detection protocols. We introduce a new concept of differential Bloom filter (DBF), which turns physical-layer signal data into a segmented Bloom filter that encodes the IDs of abnormal tags. As a case study, we propose a protocol that builds DBF for identifying all missing tags in an efficient way. We implement a prototype for missing-tag identification using USRP and WISP tags to verify the effectiveness our protocol, and use large-scale simulations for performance evaluation. The results show that our solution can significantly improve time efficiency, when comparing with the best existing work. 
    more » « less
  4. null (Ed.)
    Passive radio-frequency identification (RFID) tags are attractive because they are low cost, battery-free, and easy to deploy. This technology is traditionally being used to identify tags attached to the objects. In this paper, we explore the feasibility of turning passive RFID tags into battery-free temperature sensors. The impedance of the RFID tag changes with the temperature and this change will be manifested in the reflected signal from the tag. This opens up an opportunity to realize battery-free temperature sensing using a passive RFID tag with already deployed Commercial Off-the-Shelf (COTS) RFID reader-antenna infrastructure in supply chain management or inventory tracking. However, it is challenging to achieve high accuracy and robustness against the changes in the environment. To address these challenges, we first develop a detailed analytical model to capture the impact of temperature change on the tag impedance and the resulting phase of the reflected signal. We then build a system that uses a pair of tags, which respond differently to the temperature change to cancel out other environmental impacts. Using extensive evaluation, we show our model is accurate and our system can estimate the temperature within a 2.9 degree centigrade median error and support a normal read range of 3.5 m in an environment-independent manner. 
    more » « less
  5. In this work, we demonstrate that it is possible to read UHF RFID tags without a carrier. Specifically, we introduce an alternative reader design that does not emit a carrier and allows reading RFID tags intended for conventional carrier-based systems. While traditional RFID tags modulate a carrier, it is important to note that a modulation circuit used for backscatter also modulates the inherent noise of the tag circuitry, including the Johnson noise, irrespective of whether a carrier is present or not. Our Modulated Noise Communication (MNC) approach leverages recent work on Modulated Johnson Noise (MJN) and can be read by an alternative RFID reader design that enables simpler, more accessible RFID readings than a conventional backscatter reader by eliminating self-jamming obstructions. MNC is shown to support wireless transmission of data packets between 2 cm to 10 cm of separation between a standard UHF RFID tag and the proposed alternative reader for data rates of 1 bps and 2 bps. 
    more » « less