The proliferation of the Internet of Things is calling for new modalities that enable human interaction with smart objects. Recent research has explored RFID tags as passive sensors to detect finger touch. However, existing approaches either rely on custom-built RFID readers or are limited to pre-trained finger-swiping gestures. In this paper, we introduce KeyStub, which can discriminate multiple discrete keystrokes on an RFID tag. KeyStub interfaces with commodity RFID ICs with multiple microwave-band resonant stubs as keys. Each stub's geometry is designed to create a predefined impedance mismatch to the RFID IC upon a keystroke, which in turn translates into a known amplitude and phase shift, remotely detectable by an RFID reader. KeyStub combines two ICs' signals through a single common-mode antenna and performs differential detection to evade the need for calibration and ensure reliability in heavy multi-path environments. Our experiments using a commercial-off-the-shelf RFID reader and ICs show that up to 8 buttons can be detected and decoded with accuracy greater than 95%. KeyStub points towards a novel way of using resonant stubs to augment RF antenna structures, thus enabling new passive wireless interaction modalities.
more »
« less
DBF: A General Framework for Anomaly Detection in RFID Systems
RFID technologies are making their way into numerous applications, including inventory management, supply chain, product tracking, transportation, logistics, etc. One important application is to automatically detect anomalies in RFID systems, such as missing tags, unknown tags, or cloned tags due to theft, management error, or targeted attacks. Existing solutions are all designed to detect a certain type of RFID anomalies, but lack a general functionality for detecting different types of anomalies. This paper attempts to propose a general framework for anomaly detection in RFID systems, thereby reducing the complexity for readers and tags to implement different anomaly-detection protocols. We introduce a new concept of differential Bloom filter (DBF), which turns physical-layer signal data into a segmented Bloom filter that encodes the IDs of abnormal tags. As a case study, we propose a protocol that builds DBF for identifying all missing tags in an efficient way. We implement a prototype for missing-tag identification using USRP and WISP tags to verify the effectiveness our protocol, and use large-scale simulations for performance evaluation. The results show that our solution can significantly improve time efficiency, when comparing with the best existing work.
more »
« less
- Award ID(s):
- 1115548
- PAR ID:
- 10062287
- Date Published:
- Journal Name:
- Proceedings - IEEE INFOCOM
- ISSN:
- 0743-166X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
CXAD: Contrastive Explanations for Anomaly Detection: Algorithms, Complexity Results and ExperimentsAnomaly/Outlier detection (AD/OD) is often used in controversial applications to detect unusual behavior which is then further investigated or policed. This means an explanation of why something was predicted as an anomaly is desirable not only for individuals but also for the general population and policy-makers. However, existing explainable AI (XAI) methods are not well suited for Explainable Anomaly detection (XAD). In particular, most XAI methods provide instance-level explanations, whereas a model/global-level explanation is desirable for a complete understanding of the definition of normality or abnormality used by an AD algorithm. Further, existing XAI methods try to explain an algorithm’s behavior by finding an explanation of why an instance belongs to a category. However, by definition, anomalies/outliers are chosen because they are different from the normal instances. We propose a new style of model agnostic explanation, called contrastive explanation, that is designed specifically for AD algorithms which use semantic tags to create explanations. It addresses the novel challenge of providing a model-agnostic and global-level explanation by finding contrasts between the outlier group of instances and the normal group. We propose three formulations: (i) Contrastive Explanation, (ii) Strongly Contrastive Explanation, and (iii) Multiple Strong Contrastive Explanations. The last formulation is specifically for the case where a given dataset is believed to have many types of anomalies. For the first two formulations, we show the underlying problem is in the computational class P by presenting linear and polynomial time exact algorithms. We show that the last formulation is computationally intractable, and we use an integer linear program for that version to generate experimental results. We demonstrate our work on several data sets such as the CelebA image data set, the HateXplain language data set, and the COMPAS dataset on fairness. These data sets are chosen as their ground truth explanations are clear or well-known.more » « less
-
Currently, there is an increasing interest in the use of RFID systems with passive or battery-less tags with sensors incorporated, also known as computational RFID (CRFID) systems. These passive tags use the reader signal to power up their microcontroller and an attached sensor. Following the current standard EPC C1G2, the reader must identify the tag (receive the tag's identification code) prior to receive data from its sensor. In a typical RFID scenario, several sensor tags share the reader interrogation zone, and during their identification process, their responses often collide, increasing their identification time. Therefore, RFID application developers must be mindful of tag anti-collision protocols when dealing with CRFID tags in dense RFID sensor networks. So far, significant effort has been invested in simulation-based analysis of the performance of anti-collision protocols regarding the tags identification time. However, no one has explored the experimental performance of anti-collision protocols in an RFID sensor network using CRFID. This paper: (i) demonstrates that the impact of one tag identification time over the total time required to read one sensor data from that same tag is very significant, and (ii) presents an UHF-SDR RFID system which validates the improvement of FuzzyQ, a fast anticollision protocol, in relation to the protocol used in the current RFID standard.more » « less
-
Ensuring fairness in anomaly detection models has received much attention recently as many anomaly detection applications involve human beings. However, existing fair anomaly detection approaches mainly focus on association-based fairness notions. In this work, we target counterfactual fairness, which is a prevalent causation-based fairness notion. The goal of counterfactually fair anomaly detection is to ensure that the detection outcome of an individual in the factual world is the same as that in the counterfactual world where the individual had belonged to a different group. To this end, we propose a counterfactually fair anomaly detection (CFAD) framework which consists of two phases, counterfactual data generation and fair anomaly detection. Experimental results on a synthetic dataset and two real datasets show that CFAD can effectively detect anomalies as well as ensure counterfactual fairness.more » « less
-
The majority of existing RFID readers rely on circularly polarized or switched polarization antennas for powering and communicating with tags.In this paper, we argue that a new form of software-controlled polarization brings important benefits to the tasks of powering, communicating with, and localizing RFID tags. Using only two linearly polarized antennas, we demonstrate how one could generate an arbitrarily linear polarization in the same plane relying entirely on software control. We incorporate this approach into a protocol that automatically discovers RFID orientations in the environment and show how this approach increases the range(or alternatively reduces the transmit power) of RFID readers. We also demonstrate this approach in an end-to-end RFID localization application.more » « less
An official website of the United States government

