skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: PyRTLMatrix: an Object-Oriented Hardware Design Pattern for Prototyping ML Accelerators
As Machine Learning (ML) applications become pervasive and computer architects further integrate hardware support, the need to rapidly explore trade-offs between algorithms and hardware becomes pressing. While prior work on hardware accelerators has led to tremendous performance and energy improvements, it can be difficult to generalize these approaches without resorting to special-purpose tools or even languages. Through object-oriented design principles, we describe a general and reusable approach for generating parameterized neural network hardware. Specifically, we describe our experiences with high-level hardware design objects for building neural network hardware based on the open-source Python HDL, PyRTL. By thinking at a higher level of abstraction than simple “hardware modules,”, we open the door to a process by which hardware can be developed with software engineering principles. This creates new opportunities for a tight feedback loop between machine learning algorithm innovation and hardware design reality. Future works considering hardware development for ML applications can benefit from our work analyzing the costs and benefits of abstraction.  more » « less
Award ID(s):
1821415
PAR ID:
10114092
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2’19).
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Machine learning (ML) is transforming all areas of science. The complex and time-consuming calculations in molecular simulations are particularly suitable for an ML revolution and have already been profoundly affected by the application of existing ML methods. Here we review recent ML methods for molecular simulation, with particular focus on (deep) neural networks for the prediction of quantum-mechanical energies and forces, on coarse-grained molecular dynamics, on the extraction of free energy surfaces and kinetics, and on generative network approaches to sample molecular equilibrium structures and compute thermodynamics. To explain these methods and illustrate open methodological problems, we review some important principles of molecular physics and describe how they can be incorporated into ML structures. Finally, we identify and describe a list of open challenges for the interface between ML and molecular simulation. 
    more » « less
  2. Machine learning (ML) is transforming all areas of science.The complex and time-consuming calculations in molecular simulations are particularly suitable for an ML revolution and have already been profoundly affected by the application of existing ML methods. Here we review recent ML methods for molecular simulation, with particular focus on (deep) neural networks for the prediction of quantum-mechanical energies and forces, on coarse-grained molecular dynamics, on the extraction of free energy surfaces and kinetics, and on generative network approaches to sample molecular equilibrium structures and compute thermodynamics. To explain these methods and illustrate open methodological problems,we review some important principles of molecular physics and describe how they can be incorporated into ML structures. Finally,we identify and describe a list of open challenges for the interface between ML and molecular simulation. 
    more » « less
  3. The Open Radio Access Network (RAN) and its embodiment through the O-RAN Alliance specifications are poised to revolutionize the telecom ecosystem. O-RAN promotes virtualized RANs where disaggregated components are connected via open interfaces and optimized by intelligent controllers. The result is a new paradigm for the RAN design, deployment, and operations: O-RAN networks can be built with multi-vendor, interoperable components, and can be programmatically optimized through a centralized abstraction layer and data-driven closed-loop control. Therefore, understanding O-RAN, its architecture, its interfaces, and workflows is key for researchers and practitioners in the wireless community. In this article, we present the first detailed tutorial on O-RAN. We also discuss the main research challenges and review early research results. We provide a deep dive of the O-RAN specifications, describing its architecture, design principles, and the O-RAN interfaces. We then describe how the O-RAN RAN Intelligent Controllers (RICs) can be used to effectively control and manage 3GPP-defined RANs. Based on this, we discuss innovations and challenges of O-RAN networks, including the Artificial Intelligence (AI) and Machine Learning (ML) workflows that the architecture and interfaces enable, security, and standardization issues. Finally, we review experimental research platforms that can be used to design and test O-RAN networks, along with recent research results, and we outline future directions for O-RAN development. 
    more » « less
  4. While machine learning (ML) interatomic potentials (IPs) are able to achieve accuracies nearing the level of noise inherent in the first-principles data to which they are trained, it remains to be shown if their increased complexities are strictly necessary for constructing high-quality IPs. In this work, we introduce a new MLIP framework which blends the simplicity of spline-based MEAM (s-MEAM) potentials with the flexibility of a neural network (NN) architecture. The proposed framework, which we call the spline-based neural network potential (s-NNP), is a simplified version of the traditional NNP that can be used to describe complex datasets in a computationally efficient manner. We demonstrate how this framework can be used to probe the boundary between classical and ML IPs, highlighting the benefits of key architectural changes. Furthermore, we show that using spline filters for encoding atomic environments results in a readily interpreted embedding layer which can be coupled with modifications to the NN to incorporate expected physical behaviors and improve overall interpretability. Finally, we test the flexibility of the spline filters, observing that they can be shared across multiple chemical systems in order to provide a convenient reference point from which to begin performing cross-system analyses. 
    more » « less
  5. Diffractive optical neural networks (DONNs) are emerging as high‐throughput and energy‐efficient hardware platforms to perform all‐optical machine learning (ML) in machine vision systems. However, the current demonstrated applications of DONNs are largely image classification tasks, which undermine the prospect of developing and utilizing such hardware for other ML applications. Herein, the deployment of an all‐optical reconfigurable DONNs system for scientific computing is demonstrated numerically and experimentally, including guiding two‐dimensional quantum material synthesis, predicting the properties of two‐dimensional quantum materials and small molecular cancer drugs, predicting the device response of nanopatterned integrated photonic power splitters, and the dynamic stabilization of an inverted pendulum with reinforcement learning. Despite a large variety of input data structures, a universal feature engineering approach is developed to convert categorical input features to images that can be processed in the DONNs system. The results open up new opportunities for employing DONNs systems for a broad range of ML applications.

     
    more » « less