skip to main content


Title: A Self‐Conformable Smart Skin with Sensing and Variable Stiffness Functions
  more » « less
Award ID(s):
1700829
NSF-PAR ID:
10114102
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Intelligent Systems
Volume:
1
Issue:
5
ISSN:
2640-4567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. Abstract

    The demand for the capacitive sensor has attracted substantial attention in monitoring pressure due to its distinctive design and passive nature with versatile sensing capability. The effectiveness of the capacitive sensor primarily relies on the variation in thickness of the dielectric layer sandwiched between conductive electrodes. Additive manufacturing (AM), a set of advanced fabrication techniques, enables the production of functional electronic devices in a single-step process. Particularly, the 3D printing approach based on photocuring is a tailorable process in which the resin consists of multiple components that deliver essential mechanical qualities with enhanced sensitivity towards targeted measurements. However, the availability of photocurable resin exhibiting essential flexibility and dielectric properties for the UV-curing production process is limited. The necessity of a highly stable and sensitive capacitive sensor demands a photocurable polymer resin with a higher dielectric constant and conductive electrodes. The primary purpose of this study is to design and fabricate a capacitive device composed of novel photocurable Polyvinylidene fluoride (PVDF) resin utilizing an LCD process exhibiting higher resolution with electrodes embedded inside the substrate. The embedded electrode channels in PVDF substrate are filled with conductive silver paste by an injection process. The additively manufactured sensor provides pressure information by means of a change in capacitance of the dielectric material between the electrodes. X-Ray based micro CT-Scan ex-situ analysis is performed to visualize the capacitance based sensor filled with conductive electrodes. The sensor is tested to measure capacitance response with changes in pressure as a function of time that are utilized for sensitivity analysis. This work represents a significant achievement of AM integration in developing efficient and robust capacitive sensors for pressure monitoring or wearable electronic applications.

     
    more » « less
  3. Abstract

    Direct printing of flexible and stretchable conductors provides a low‐cost mask‐less approach for the fabrication of next‐generation electronics. In this work, an electrohydrodynamic (EHD) printing technology is studied to achieve high‐resolution printing of low‐melting‐point metal alloys, which enables low‐cost direct fabrication of metallic conductors with sub 50 µm resolution. The EHD printed microscale metallic conductors represent a promising way to create conductive paths with metallic conductivity and excellent flexibility and stretchability. A stable electrical response is achieved after hundreds of bending cycles and during stretching/releasing cycles in a large range of tensile strain (0–70%) for the printed conductors with properly designed 2D patterns. Due to the low melting point of the metal alloy ink, the printed conductor demonstrates self‐healing capability that recovers from failure simply by heating the device above the eutectic temperature of the metal ink and applying slight pressure. A high‐density touch sensor array is fabricated to demonstrate the high‐resolution capability of the EHD printing for the direction fabrication of flexible and stretchable devices.

     
    more » « less
  4. Abstract

    Wearable piezoresistive sensors are being developed as electronic skins (E‐skin) for broad applications in human physiological monitoring and soft robotics. Tactile sensors with sufficient sensitivities, durability, and large dynamic ranges are required to replicate this critical component of the somatosensory system. Multiple micro/nanostructures, materials, and sensing modalities have been reported to address this need. However, a trade‐off arises between device performance and device complexity. Inspired by the microstructure of the spinosum at the dermo epidermal junction in skin, a low‐cost, scalable, and high‐performance piezoresistive sensor is developed with high sensitivity (0.144 kPa‐1), extensive sensing range ( 0.1–15 kPa), fast response time (less than 150 ms), and excellent long‐term stability (over 1000 cycles). Furthermore, the piezoresistive functionality of the device is realized via a flexible transparent electrode (FTE) using a highly stable reduced graphene oxide self‐wrapped copper nanowire network. The developed nanowire‐based spinosum microstructured FTEs are amenable to wearable electronics applications.

     
    more » « less
  5. Abstract

    Multi‐layer electrical interconnects are critical for the development of integrated soft wearable electronic systems, in which functional devices from different layers need to be connected together by vertical interconnects. In this work, electrohydrodynamic (EHD) printing technology is studied to achieve multi‐layer flexible and stretchable electronics by direct printing vertical interconnects as vertical interconnect accesses (VIAs) using a low‐melting‐point metal alloy. The EHD printed metallic vertical interconnection represents a promising way for the direct fabrication of multilayer integrated electronics with metallic conductivity and excellent flexibility and stretchability. By controlling the printing conditions, vertical interconnects that can bridge different heights can be fabricated. To achieve reliable VIA connections under bending and stretching conditions, an epoxy protective structure is printed around the VIA interconnects to form a core‐shell structure. A stable electrical response is achieved under hundreds of bending cycles and during stretching/releasing cycles in a large range of tensile strain (0–40%) for the printed conductors with VIA interconnects. A few multi‐layer devices, including a multiple layer heater, and a pressure‐based touch panel are fabricated to demonstrate the capability of the EHD printing for the direct fabrication of vertical metallic VIA interconnects for flexible and stretchable devices.

     
    more » « less