skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1700829

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Artificial smart skins that integrate sensing and adaptiveness present a novel platform in wearable electronics on epidermis or next‐generation robotics. Herein, a highly sensitive capacitive touch senor based on a self‐conformable bi‐stable electroactive polymer (BSEP) is developed. The device combines the properties of conformable polymers and touch sensors, which grants the sensor the ability to conform to the shape of various surfaces and in different working conditions. A spray‐coated silver nanowire (AgNW) is selected as the sensor electrode for high‐resolution patterning. The unique antenna‐shaped electrode pattern results in a capacitance change of 31% when in contact with ground at a baseline of 0.13 pF. The BSEP provides stiffness tunability via an embedded compliant heater. The heater combines interdigitated silver with carbon nanotubes delivering uniform and highly efficient heating to create a tunable device with stiffness between 100s of MPa and tens of kPa, providing a large working flexibility. The efficient resistive heater provides uniform and stable heating over an area of 40 by 40 mm with a rate of 48 °C min−1at an input voltage as low as 7 V. This research merges intelligent polymeric systems and thin film electronics advancing conformable, skin‐like functional electronics. 
    more » « less
  2. Bistable electroactive polymers (BSEP) combine shape memory with large-strain actuation at the rubbery state to achieve rigid-to-rigid actuation. The stiffness of the BSEP is tunable via glass transition or phase changing. The reversible melting-crystallization of the polymer chains in the phase changing BSEP contributes to the stiffness change within a narrow temperature range. A modulus change of more than 1000 folds can be achieved within 3 °C. Additionally, large actuation strains rivaling those of VHB acrylic elastomers can be obtained at the rubbery state. Explorations regarding potential applications of this material have been focused on tactile displays. In one design, Joule heating of a serpentine-shaped compliant electrode coated on a BSEP film, coupled with a pneumatic pressure source has been employed to raise diaphragm dots with 1.5 mm base diameter to heights up to 0.7 mm. The resulting Braille electronic readers could thus be actuated with low voltages. 
    more » « less