skip to main content


Title: Pastoralist activities affect the movement patterns of a large African carnivore, the spotted hyena (Crocuta crocuta)
Abstract

Populations of large carnivores are declining in many parts of the world due to anthropogenic activity. Some species of large carnivores, however, are able to coexist with people by altering their behavior. Altered behaviors may be challenging to identify in large carnivores because these animals are typically cryptic, nocturnal, live at low densities, and because changes in their behavior may be subtle or emerge slowly over many years. We studied the effects of livestock presence on the movements of one large carnivore, the spotted hyena (Crocuta crocuta). We fit 22 adult female spotted hyenas with GPS collars to quantify their movements in areas with and without livestock or herders present, in and around a protected area in southwestern Kenya. We investigated anthropogenic, social, and ecological effects on the speed of movement, distances traveled, long-distance movements, and extraterritorial excursions by spotted hyenas. Hyenas living primarily within the protected area, but in the presence of livestock and herders, moved faster, traveled over longer distances, and were more likely to be within their territories than did conspecifics living in areas without livestock and herders. Hyenas of low social rank were more likely than hyenas of high social rank to engage in long-distance travel events, and these were more likely to occur when prey were scarce. The movement patterns of this large African carnivore indicate a flexibility that may allow them to persist in landscapes that are becoming increasingly defined by people.

 
more » « less
Award ID(s):
1755089 1853934
NSF-PAR ID:
10114136
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Mammalogy
Volume:
100
Issue:
6
ISSN:
0022-2372
Page Range / eLocation ID:
p. 1941-1953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Host-associated microbial communities, henceforth ‘microbiota’, can affect the physiology and behavior of their hosts. In mammals, host ecological, social and environmental variables are associated with variation in microbial communities. Within individuals in a given mammalian species, the microbiota also partitions by body site. Here, we build on this work and sequence the bacterial 16S rRNA gene to profile the microbiota at six distinct body sites (ear, nasal and oral cavities, prepuce, rectum and anal scent gland) in a population of wild spotted hyenas (Crocuta crocuta), which are highly social, large African carnivores. We inquired whether microbiota at these body sites vary with host sex or social rank among juvenile hyenas, and whether they differ between juvenile females and adult females. We found that the scent gland microbiota differed between juvenile males and juvenile females, whereas the prepuce and rectal microbiota differed between adult females and juvenile females. Social rank, however, was not a significant predictor of microbiota profiles. Additionally, the microbiota varied considerably among the six sampled body sites and exhibited strong specificity among individual hyenas. Thus, our findings suggest that site-specific niche selection is a primary driver of microbiota structure in mammals, but endogenous host factors may also be influential. 
    more » « less
  2. Abstract

    Anthropogenic disturbance can have important influences on the fitness and behaviors of wild animals, including their boldness when exposed to risky conditions. We presented spotted hyenas (Crocuta crocuta) from two populations, each exposed to a different level of human activity, with a life‐size model hyena representing an intruder from another clan. The high‐disturbance population lived adjacent to human settlements, and the low‐disturbance population inhabited a relatively undisturbed part of the same national park in Kenya. The mock intruder was presented to individual hyenas to assess their reactions to an alien hyena, and to determine whether their reactions varied with their exposure to anthropogenic activity. We found that human disturbance was indeed associated with hyena risk‐taking behavior in response to the model intruder. Hyenas tested in the low‐disturbance area exhibited more risk‐taking behaviors by approaching the mock intruder more closely, and spending more time near it, than did their counterparts living in high‐disturbance areas. Hyenas that spent less time in close proximity to the model had greater survivorship than those that spent more time in close proximity to it, regardless of disturbance level. Furthermore, the individual differences in risk‐taking measured here were consistent with those obtained previously from the same animals using a different set of experimental manipulations. However, the experimentally induced behaviors were not consistent with naturally occurring risk‐taking behaviors in proximity to lions; this suggests that risk‐taking behaviors are consistent within individuals across experimental contexts, but that exposure to lions elicits different responses. Although our results are consistent with those from earlier tests of anthropogenic disturbance and boldness in spotted hyenas and other predators, they differ from results obtained from birds and small mammals, which are generally found to be bolder in areas characterized by human disturbance.

     
    more » « less
  3. Abstract

    When navigating heterogeneous landscapes, large carnivores must balance trade‐offs between multiple goals, including minimizing energetic expenditure, maintaining access to hunting opportunities and avoiding potential risk from humans. The relative importance of these goals in driving carnivore movement likely changes across temporal scales, but our understanding of these dynamics remains limited.

    Here we quantified how drivers of movement and habitat selection changed with temporal grain for two large carnivore species living in human‐dominated landscapes, providing insights into commonalities in carnivore movement strategies across regions.

    We used high‐resolution GPS collar data and integrated step selection analyses to model movement and habitat selection for African lionsPanthera leoin Laikipia, Kenya and pumasPuma concolorin the Santa Cruz Mountains of California across eight temporal grains, ranging from 5 min to 12 hr. Analyses considered landscape covariates that are related to energetics, resource acquisition and anthropogenic risk.

    For both species, topographic slope, which strongly influences energetic expenditure, drove habitat selection and movement patterns over fine temporal grains but was less important at longer temporal grains. In contrast, avoiding anthropogenic risk during the day, when risk was highest, was consistently important across grains, but the degree to which carnivores relaxed this avoidance at night was strongest for longer term movements. Lions and pumas modified their movement behaviour differently in response to anthropogenic features: lions sped up while near humans at fine temporal grains, while pumas slowed down in more developed areas at coarse temporal grains. Finally, pumas experienced a trade‐off between energetically efficient movement and avoiding anthropogenic risk.

    Temporal grain is an important methodological consideration in habitat selection analyses, as drivers of both movement and habitat selection changed across temporal grain. Additionally, grain‐dependent patterns can reflect meaningful behavioural processes, including how fitness‐relevant goals influence behaviour over different periods of time. In applying multi‐scale analysis to fine‐resolution data, we showed that two large carnivore species in very different human‐dominated landscapes balanced competing energetic and safety demands in largely similar ways. These commonalities suggest general strategies of landscape use across large carnivore species.

     
    more » « less
  4. Abstract

    Within a large carnivore guild, subordinate competitors (African wild dog,Lycaon pictus, and cheetah,Acinonyx jubatus) might reduce the limiting effects of dominant competitors (lion,Panthera leo, and spotted hyena,Crocuta crocuta) by avoiding them in space, in time, or through patterns of prey selection. Understanding how these competitors cope with one other can inform strategies for their conservation. We tested how mechanisms of niche partitioning promote coexistence by quantifying patterns of prey selection and the use of space and time by all members of the large carnivore guild within Liuwa Plain National Park in western Zambia. Lions and hyenas specialized on wildebeest, whereas wild dogs and cheetahs selected broader diets including smaller and less abundant prey. Spatially, cheetahs showed no detectable avoidance of areas heavily used by dominant competitors, but wild dogs avoided areas heavily used by lions. Temporally, the proportion of kills by lions and hyenas did not detectably differ across four time periods (day, crepuscular, early night, and late night), but wild dogs and especially cheetahs concentrated on time windows that avoided nighttime hunting by lions and hyenas. Our results provide new insight into the conditions under which partitioning may not allow for coexistence for one subordinate species, the African wild dog, while it does for cheetah. Because of differences in responses to dominant competitors, African wild dogs may be more prone to competitive exclusion (local extirpation), particularly in open, uniform ecosystems with simple (often wildebeest dominated) prey communities, where spatial avoidance is difficult.

     
    more » « less
  5. Hird, Sarah M. (Ed.)
    The gut microbiome provides vital functions for mammalian hosts, yet research on its variability and function across adult life spans and multiple generations is limited in large mammalian carnivores. Here, we used 16S rRNA gene and metagenomic high-throughput sequencing to profile the bacterial taxonomic composition, genomic diversity, and metabolic function of fecal samples collected from 12 wild spotted hyenas ( Crocuta crocuta ) residing in the Masai Mara National Reserve, Kenya, over a 23-year period spanning three generations. The metagenomic data came from four of these hyenas and spanned two 2-year periods. With these data, we determined the extent to which host factors predicted variation in the gut microbiome and identified the core microbes present in the guts of hyenas. We also investigated novel genomic diversity in the mammalian gut by reporting the first metagenome-assembled genomes (MAGs) for hyenas. We found that gut microbiome taxonomic composition varied temporally, but despite this, a core set of 14 bacterial genera were identified. The strongest predictors of the microbiome were host identity and age, suggesting that hyenas possess individualized microbiomes and that these may change with age during adulthood. The gut microbiome functional profiles of the four adult hyenas were also individual specific and were associated with prey abundance, indicating that the functions of the gut microbiome vary with host diet. We recovered 149 high-quality MAGs from the hyenas’ guts; some MAGs were classified as taxa previously reported for other carnivores, but many were novel and lacked species-level matches to genomes in existing reference databases. IMPORTANCE There is a gap in knowledge regarding the genomic diversity and variation of the gut microbiome across a host’s life span and across multiple generations of hosts in wild mammals. Using two types of sequencing approaches, we found that although gut microbiomes were individualized and temporally variable among hyenas, they correlated similarly to large-scale changes in the ecological conditions experienced by their hosts. We also recovered 149 high-quality MAGs from the hyena gut, greatly expanding the microbial genome repertoire known for hyenas, carnivores, and wild mammals in general. Some MAGs came from genera abundant in the gastrointestinal tracts of canid species and other carnivores, but over 80% of MAGs were novel and from species not previously represented in genome databases. Collectively, our novel body of work illustrates the importance of surveying the gut microbiome of nonmodel wild hosts, using multiple sequencing methods and computational approaches and at distinct scales of analysis. 
    more » « less