skip to main content


Title: Understanding Hydrogen Bonding Interactions in Crosslinked Methylammonium Lead Iodide Crystals: Towards Reducing Moisture and Light Degradation Pathways
Abstract

Methylammonium lead halide perovskite‐based solar cells have demonstrated efficiencies as high as 24.2 %, highlighting their potential as inexpensive and solution‐processable alternatives to silicon solar cell technologies. Poor stability towards moisture, ultraviolet irradiation, heat, and a bias voltage of the perovskite layer and its various device interfaces limits the commercial feasibility of this material for outdoor applications. Herein, we investigate the role of hydrogen bonding interactions induced when metal halide perovskite crystals are crosslinked with alkyl or π‐conjugated boronic acid small molecules (‐B(OH)2). The crosslinked perovskite crystals are investigated under continuous light irradiation and moisture exposure. These studies demonstrate that the origin of the interaction between the alkyl or π‐conjugated crosslinking molecules is due to hydrogen bonding between the ‐B(OH)2terminal group of the crosslinker and the I of the [PbI6]4−octahedra of the perovskite layer. Also, this interaction influences the stability of the perovskite layer towards moisture and ultraviolet light irradiation. Morphology and structural analyses, as well as IR studies as a function of aging under both dark and light conditions show that π‐conjugated boronic acid molecules are more effective crosslinkers of the perovskite crystals than their alkyl counterparts thus imparting better stability towards light and moisture degradation.

 
more » « less
NSF-PAR ID:
10114875
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
39
ISSN:
1433-7851
Page Range / eLocation ID:
p. 13912-13921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Methylammonium lead halide perovskite‐based solar cells have demonstrated efficiencies as high as 24.2 %, highlighting their potential as inexpensive and solution‐processable alternatives to silicon solar cell technologies. Poor stability towards moisture, ultraviolet irradiation, heat, and a bias voltage of the perovskite layer and its various device interfaces limits the commercial feasibility of this material for outdoor applications. Herein, we investigate the role of hydrogen bonding interactions induced when metal halide perovskite crystals are crosslinked with alkyl or π‐conjugated boronic acid small molecules (‐B(OH)2). The crosslinked perovskite crystals are investigated under continuous light irradiation and moisture exposure. These studies demonstrate that the origin of the interaction between the alkyl or π‐conjugated crosslinking molecules is due to hydrogen bonding between the ‐B(OH)2terminal group of the crosslinker and the I of the [PbI6]4−octahedra of the perovskite layer. Also, this interaction influences the stability of the perovskite layer towards moisture and ultraviolet light irradiation. Morphology and structural analyses, as well as IR studies as a function of aging under both dark and light conditions show that π‐conjugated boronic acid molecules are more effective crosslinkers of the perovskite crystals than their alkyl counterparts thus imparting better stability towards light and moisture degradation.

     
    more » « less
  2. All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and long-term environmental stability. Here, we report the addition of B-site cation and X-site anion (pseudo-halide) concurrently using Ba(SCN)2 (≤50%) in CsPbX3 NCs to reduce the lead and improve the photophysical properties and stability. The as-grown particles demonstrated an analogous structure with an almost identical lattice constant and a fluctuation of particle size without altering the morphology of particles. Photoluminescence quantum yield is enhanced up to near unity (~98%) by taking advantage of concomitant doping at the B- and X-site of the structure. Benefitted from the defect reductions and stronger bonding interaction between Pb2+ and SCN− ions, Ba(SCN)2-based NCs exhibit improved stability towards air and moisture compared to the host NCs. The doped NCs retain higher PLQY (as high as seven times) compared to the host NCs) when stored in an ambient atmosphere for more than 176 days. A novel 3D-printed multiplex color conversion layer was used to fabricate a white light-emitting diode (LED). The obtained white light shows a correlated color temperature of 6764 K, a color rendering index of 87, and luminous efficacy of radiation of 333 lm/W. In summary, this work proposes a facile route to treat sensitive lead halide perovskite NCs and to fabricate LEDs by using a low-cost large-scale 3-D printing method, which would serve as a foundation for fabricating high-quality optoelectronic devices for near future lighting technologies. 
    more » « less
  3. Abstract

    Semiconducting molecules have been employed to passivate traps extant in the perovskite film for enhancement of perovskite solar cells (PSCs) efficiency and stability. A molecular design strategy to passivate the defects both on the surface and interior of the CH3NH3PbI3perovskite layer, using two phthalocyanine (Pc) molecules (NP‐SC6‐ZnPc andNP‐SC6‐TiOPc) is demonstrated. The presence of lone electron pairs on S, N, and O atoms of the Pc molecular structures provides the opportunity for Lewis acid–base interactions with under‐coordinated Pb2+sites, leading to efficient defect passivation of the perovskite layer. The tendency of bothNP‐SC6‐ZnPc andNP‐SC6‐TiOPc to relax on the PbI2terminated surface of the perovskite layer is also studied using density functional theory (DFT) calculations. The morphology of the perovskite layer is improved due to employing the Pc passivation strategy, resulting in high‐quality thin films with a dense and compact structure and lower surface roughness. UsingNP‐SC6‐ZnPc andNP‐SC6‐TiOPc as passivating agents, it is observed considerably enhanced power conversion efficiencies (PCEs), from 17.67% for the PSCs based on the pristine perovskite film to 19.39% forNP‐SC6‐TiOPc passivated devices. Moreover, PSCs fabricated based on the Pc passivation method present a remarkable stability under conditions of high moisture and temperature levels.

     
    more » « less
  4. Abstract

    Despite the rapid progress in solar power conversion efficiency of archetype organic–inorganic hybrid perovskite CH3NH3PbI3‐based solar cells, the long‐term stability and toxicity of Pb remain the main challenges for the industrial deployment, leading to more uncertainties for global commercialization. The poor stabilities of CH3NH3PbI3‐based solar cells may not only be attributed to the organic molecules but also the halides themself, most of which exhibit intrinsic instability under moisture and light. As an alternative, the possibility of oxide perovskites for photovoltaic applications is explored here. The class of lead‐free stable oxide double perovskites A2M(III)M(V)O6(A = Ca, Sr, Ba; M(III) = Sb3+or Bi3+; M(V) = V5+, Nb5+, or Ta5+) is comprehensively explored with regard to their stability and their electronic and optical properties. Apart from the strong stability, this class of double perovskites exhibits direct bandgaps ranging from 0.3 to 3.8 eV. With proper B site alloying, the bandgap can be tuned within the range of 1.0–1.6 eV with optical absorptions as strong as CH3NH3PbI3, making them suitable for efficient single‐junction thin‐film solar cell application.

     
    more » « less
  5. Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10 −7 S cm −1 ) compared to 1 (1.6 × 10 −8 S cm −1 ). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5–1.9 eV), indicating the potential of these materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10 −6 S cm −1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells. 
    more » « less