skip to main content


Title: Near Unity PLQY and High Stability of Barium Thiocyanate Based All-Inorganic Perovskites and Their Applications in White Light-Emitting Diodes
All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and long-term environmental stability. Here, we report the addition of B-site cation and X-site anion (pseudo-halide) concurrently using Ba(SCN)2 (≤50%) in CsPbX3 NCs to reduce the lead and improve the photophysical properties and stability. The as-grown particles demonstrated an analogous structure with an almost identical lattice constant and a fluctuation of particle size without altering the morphology of particles. Photoluminescence quantum yield is enhanced up to near unity (~98%) by taking advantage of concomitant doping at the B- and X-site of the structure. Benefitted from the defect reductions and stronger bonding interaction between Pb2+ and SCN− ions, Ba(SCN)2-based NCs exhibit improved stability towards air and moisture compared to the host NCs. The doped NCs retain higher PLQY (as high as seven times) compared to the host NCs) when stored in an ambient atmosphere for more than 176 days. A novel 3D-printed multiplex color conversion layer was used to fabricate a white light-emitting diode (LED). The obtained white light shows a correlated color temperature of 6764 K, a color rendering index of 87, and luminous efficacy of radiation of 333 lm/W. In summary, this work proposes a facile route to treat sensitive lead halide perovskite NCs and to fabricate LEDs by using a low-cost large-scale 3-D printing method, which would serve as a foundation for fabricating high-quality optoelectronic devices for near future lighting technologies.  more » « less
Award ID(s):
1945558
NSF-PAR ID:
10317154
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Photonics
Volume:
8
Issue:
6
ISSN:
2304-6732
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The all‐inorganic metal halide perovskite CsPbX3(X = Cl, Br, and I) has received extensive attention in the field of white light‐emitting diodes (WLEDs) due to its high luminous intensity and high color purity. However, the shortcoming of poor stability directly affects the luminous performance of the WLED devices and reduces their luminous efficiency, which has become an urgent problem to be solved. Here, three‐color lead halide perovskite phosphors (blue‐emitting CsPbBr3synthesized at 20 °C (CPB‐20), green‐emitting CsPbBr3‐80 (CPB‐80)/CsPbBr3:SCN(CPB:SCN), and red‐emitting PEA2PbBr4(PPB)/PEA2PbBr4:Mn2+(PPB:Mn2+)) with higher stability and luminous intensity are simultaneously prepared and applied in WLEDs. Density functional theory is used to optimize the structures of CsPbBr3and PEA2PbBr4, and to calculate the work function, optical properties, and charge density difference. Not only the WLED devices with three‐color lead halide perovskite phosphors are constructed, but also WLED devices from warm white to cold white are realized by tuning the ratio of the different emissions, and a superior color quality (color rendering index of 96) and ideal correlated color temperature (CCT of 9376 K) are achieved. This work will set the stage for exploring low‐cost, environmentally friendly, high‐performance WLEDs.

     
    more » « less
  2. Abstract

    Doping of CsPbBr3perovskite nanocrystals (PNCs) to achieve excellent material properties is accelerating due to their increasing use in optoelectronic devices. Herein, a novel composite of CsPbBr3PNCs with nickel thiocyanate Ni(SCN)2is reported, exhibiting stronger photoluminescence (PL) and more extended stability. The addition of Ni(SCN)2at different molar concentrations reduces the surface trap states of the host PNCs. Therefore, the microstrain, dislocation density, PL emission linewidth, and Urbach energy decrease, resulting in an increased photoluminescence quantum yield (PLQY) from 72% to high above 90%. When stored in the ambient atmosphere for 120 days, the PLQY of doped PNCs is maintained by more than four times compared to host PNCs. A combination of 3D‐printed conversion layers containing green‐, yellow‐, and red‐emitting doped PNCs with blue light‐emitting diodes results in stable white light with superior color qualities. Hence, new composites with desired properties are developed as an alternative to conventional color phosphors.

     
    more » « less
  3. All-inorganic halide perovskite nanocrystals (NCs) offer impressive optoelectronic properties for light harvesting, energy conversion, and photoredox applications, with two-dimensional (2D) perovskite NCs further increasing these prospects due to their improved photoluminescence (PL) tuneability, impressive color purity, high in-plane charge transport, and large lateral dimensions which is advantageous for device integration. However, the synthesis of 2D perovskites is still challenging, especially toward large-scale applications. In this study, through the control of surface ligand composition and concentration of a mixture of short (octanoic acid and octylamine, 8-carbon chain) and long (oleic acid and oleylamine, 18-carbon chain) ligands, we have developed an extremely facile ligand-mediated synthesis of 2D CsPbX 3 (X = Cl, Br, or mixture thereof) nanoplatelets (NPLs) at room temperature in an open vessel. In addition, the developed method is highly versatile and can be applied to synthesize Mn-doped CsPbX 3 NPLs, showing a systematic increase in the total PL quantum yield (QY) and the Mn-dopant emission around 600 nm with increasing Mn and Cl concentrations. The reaction occurs in toluene by the introduction of CsX, PbX 2 , and MnX 2 precursors under ambient conditions, which requires no harsh acids, avoids excessive lead waste, little thermal energy input, and is potentially scalable toward industrial applications. 
    more » « less
  4. Abstract

    All‐inorganic lead halide perovskite nanocrystals (NCs) have great optoelectronic properties with promising applications in light‐emitting diodes (LEDs), lasers, photodetectors, solar cells, and photocatalysis. However, the intrinsic toxicity of Pb and instability of the NCs impede their broad applications. Shell‐coating is an effective method for enhanced environmental stability while reducing toxicity by choosing non‐toxic shell materials such as metal oxides, polymers, silica, etc. However, multiple perovskite NCs can be encapsulated within the shell material and a uniform epitaxial‐type shell growth of well‐isolated NCs is still challenging. In this work, lead‐free vacancy‐ordered double perovskite Cs2SnX6(X = Cl, Br, and I) shells are epitaxially grown on the surface of CsPbX3NCs by a hot‐injection method. The effectiveness of the non‐toxic double perovskite shell protection is demonstrated by the enhanced environmental and phase stability against UV illumination and water. In addition, the photoluminescence quantum yields (PL QYs) increase for the CsPbCl3and CsPbBr3NCs after shelling because of the type I band alignment of the core/shell materials, while enhanced charge transport properties obtained from CsPbI3/Cs2SnI6core/shell NCs are due to the efficient charge separation in the type II core/shell band alignment.

     
    more » « less
  5. Metal-halide perovskites, in particular their nanocrystal forms, have emerged as a new generation of light-emitting materials with exceptional optical properties, including narrow emissions covering the whole visible region with high photoluminescence quantum efficiencies of up to near-unity. Remarkable progress has been achieved over the last few years in the areas of materials development and device integration. A variety of synthetic approaches have been established to precisely control the compositions and microstructures of metal-halide perovskite nanocrystals (NCs) with tunable bandgaps and emission colors. The use of metal-halide perovskite NCs as active materials for optoelectronic devices has been extensively explored. Here, we provide a brief overview of recent advances in the development and application of metal-halide perovskite NCs. From color tuning via ion exchange and manipulation of quantum size effects, to stability enhancement via surface passivation, new chemistry for materials development is discussed. In addition, processes in optoelectronic devices based on metal-halide perovskite NCs, in particular, light-emitting diodes and radiation detectors, will be introduced. Opportunities for future research in metal-halide perovskite NCs are provided as well. 
    more » « less