- Award ID(s):
- 1945558
- PAR ID:
- 10317154
- Date Published:
- Journal Name:
- Photonics
- Volume:
- 8
- Issue:
- 6
- ISSN:
- 2304-6732
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Metal-halide perovskites, in particular their nanocrystal forms, have emerged as a new generation of light-emitting materials with exceptional optical properties, including narrow emissions covering the whole visible region with high photoluminescence quantum efficiencies of up to near-unity. Remarkable progress has been achieved over the last few years in the areas of materials development and device integration. A variety of synthetic approaches have been established to precisely control the compositions and microstructures of metal-halide perovskite nanocrystals (NCs) with tunable bandgaps and emission colors. The use of metal-halide perovskite NCs as active materials for optoelectronic devices has been extensively explored. Here, we provide a brief overview of recent advances in the development and application of metal-halide perovskite NCs. From color tuning via ion exchange and manipulation of quantum size effects, to stability enhancement via surface passivation, new chemistry for materials development is discussed. In addition, processes in optoelectronic devices based on metal-halide perovskite NCs, in particular, light-emitting diodes and radiation detectors, will be introduced. Opportunities for future research in metal-halide perovskite NCs are provided as well.more » « less
-
Abstract The all‐inorganic metal halide perovskite CsPbX3(X = Cl, Br, and I) has received extensive attention in the field of white light‐emitting diodes (WLEDs) due to its high luminous intensity and high color purity. However, the shortcoming of poor stability directly affects the luminous performance of the WLED devices and reduces their luminous efficiency, which has become an urgent problem to be solved. Here, three‐color lead halide perovskite phosphors (blue‐emitting CsPbBr3synthesized at 20 °C (CPB‐20), green‐emitting CsPbBr3‐80 (CPB‐80)/CsPbBr3:SCN−(CPB:SCN−), and red‐emitting PEA2PbBr4(PPB)/PEA2PbBr4:Mn2+(PPB:Mn2+)) with higher stability and luminous intensity are simultaneously prepared and applied in WLEDs. Density functional theory is used to optimize the structures of CsPbBr3and PEA2PbBr4, and to calculate the work function, optical properties, and charge density difference. Not only the WLED devices with three‐color lead halide perovskite phosphors are constructed, but also WLED devices from warm white to cold white are realized by tuning the ratio of the different emissions, and a superior color quality (color rendering index of 96) and ideal correlated color temperature (CCT of 9376 K) are achieved. This work will set the stage for exploring low‐cost, environmentally friendly, high‐performance WLEDs.
-
Metal halide perovskite nanocrystals (NCs) have emerged as new-generation light-emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g., platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectrum. Despite remarkable advances in the field of perovskite NCs, many nanostructures in inorganic NCs have not yet been realized in metal halide perovskites, and producing highly efficient blue-emitting perovskite NCs remains challenging and of great interest. Here, we report the discovery of highly efficient blue-emitting cesium lead bromide (CsPbBr 3 ) perovskite hollow NCs. By facile solution processing of CsPbBr 3 precursor solution containing ethylenediammonium bromide and sodium bromide, in situ formation of hollow CsPbBr 3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effect results in color tuning of CsPbBr 3 NCs from green to blue, with high PLQEs of up to 81%.more » « less
-
Abstract Doping of CsPbBr3perovskite nanocrystals (PNCs) to achieve excellent material properties is accelerating due to their increasing use in optoelectronic devices. Herein, a novel composite of CsPbBr3PNCs with nickel thiocyanate Ni(SCN)2is reported, exhibiting stronger photoluminescence (PL) and more extended stability. The addition of Ni(SCN)2at different molar concentrations reduces the surface trap states of the host PNCs. Therefore, the microstrain, dislocation density, PL emission linewidth, and Urbach energy decrease, resulting in an increased photoluminescence quantum yield (PLQY) from 72% to high above 90%. When stored in the ambient atmosphere for 120 days, the PLQY of doped PNCs is maintained by more than four times compared to host PNCs. A combination of 3D‐printed conversion layers containing green‐, yellow‐, and red‐emitting doped PNCs with blue light‐emitting diodes results in stable white light with superior color qualities. Hence, new composites with desired properties are developed as an alternative to conventional color phosphors.
-
Abstract In recent years, there have been rapid advances in the synthesis of lead halide perovskite nanocrystals (NCs) for use in solar cells, light emitting diodes, lasers, and photodetectors. These compounds have a set of intriguing optical, excitonic, and charge transport properties, including outstanding photoluminescence quantum yield (PLQY) and tunable optical band gap. However, the necessary inclusion of lead, a toxic element, raises a critical concern for future commercial development. To address the toxicity issue, intense recent research effort has been devoted to developing lead‐free halide perovskite (LFHP) NCs. In this Review, we present a comprehensive overview of currently explored LFHP NCs with an emphasis on their crystal structures, synthesis, optical properties, and environmental stabilities (e.g., UV, heat, and moisture resistance). In addition, strategies for enhancing optical properties and stabilities of LFHP NCs as well as the state‐of‐the‐art applications are discussed. With the perspective of their properties and current challenges, we provide an outlook for future directions in this rapidly evolving field to achieve high‐quality LFHP NCs for a broader range of fundamental research and practical applications.