skip to main content

Title: Transcriptomics of host-specific interactions in natural populations of the parasitic plant purple witchweed ( Striga hermonthica )
Abstract Host-specific interactions can maintain genetic and phenotypic diversity in parasites that attack multiple host species. Host diversity, in turn, may promote parasite diversity by selection for genetic divergence or plastic responses to host type. The parasitic weed purple witchweed [ Striga hermonthica (Delile) Benth.] causes devastating crop losses in sub-Saharan Africa and is capable of infesting a wide range of grass hosts. Despite some evidence for host adaptation and host-by- Striga genotype interactions, little is known about intraspecific Striga genomic diversity. Here we present a study of transcriptomic diversity in populations of S. hermonthica growing on different hosts (maize [ Zea mays L.] vs. grain sorghum [ Sorghum bicolor (L.) Moench]). We examined gene expression variation and differences in allelic frequency in expressed genes of aboveground tissues from populations in western Nigeria parasitizing each host. Despite low levels of host-based genome-wide differentiation, we identified a set of parasite transcripts specifically associated with each host. Parasite genes in several different functional categories implicated as important in host–parasite interactions differed in expression level and allele on different hosts, including genes involved in nutrient transport, defense and pathogenesis, and plant hormone response. Overall, we provide a set of candidate transcripts that demonstrate more » host-specific interactions in vegetative tissues of the emerged parasite S. hermonthica . Our study shows how signals of host-specific processes can be detected aboveground, expanding the focus of host–parasite interactions beyond the haustorial connection. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1711950
Publication Date:
NSF-PAR ID:
10115018
Journal Name:
Weed Science
Volume:
67
Issue:
4
Page Range or eLocation-ID:
397 to 411
ISSN:
1550-2759
Sponsoring Org:
National Science Foundation
More Like this
  1. Host–parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple cropSorghum bicolor(L.) Moench and its association with the parasitic weedStriga hermonthica(Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghumLOW GERMINATION STIMULANT 1 (LGS1)are broadly distributed among African landraces and geographically associated withS. hermonthicaoccurrence. However, low frequency of these alleles withinS. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation.LGS1is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surroundingLGS1and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR–Cas9-edited sorghum further indicate that the benefit ofLGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comesmore »at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.

    « less
  2. Virus–host interactions evolve along a symbiosis continuum from antagonism to mutualism. Long-term associations between virus and host, such as those in chronic infection, will select for traits that drive the interaction towards mutualism, especially when susceptible hosts are rare in the population. Virus–host mutualism has been demonstrated in thermophilic archaeal populations where Sulfolobus spindle-shaped viruses (SSVs) provide a competitive advantage to their host Sulfolobus islandicus by producing a toxin that kills uninfected strains. Here, we determine the genetic basis of this killing phenotype by identifying highly transcribed genes in cells that are chronically infected with a diversity of SSVs. We demonstrate that these genes alone confer growth inhibition by being expressed in uninfected cells via a Sulfolobus expression plasmid. Challenge of chronically infected strains with vector-expressed toxins revealed a nested network of cross-toxicity among divergent SSVs, with both broad and specific toxin efficacies. This suggests that competition between viruses and/or their hosts could maintain toxin diversity. We propose that competitive interactions among chronic viruses to promote their host fitness form the basis of virus–host mutualism. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
  3. Storz, Gisela (Ed.)
    ABSTRACT Mutations in regulatory mechanisms that control gene expression contribute to phenotypic diversity and thus facilitate the adaptation of microbes and other organisms to new niches. Comparative genomics can be used to infer rewiring of regulatory architecture based on large effect mutations like loss or acquisition of transcription factors but may be insufficient to identify small changes in noncoding, intergenic DNA sequence of regulatory elements that drive phenotypic divergence. In human-derived Vibrio cholerae , the response to distinct chemical cues triggers production of multiple transcription factors that can regulate the type VI secretion system (T6), a broadly distributed weapon for interbacterial competition. However, to date, the signaling network remains poorly understood because no regulatory element has been identified for the major T6 locus. Here we identify a conserved cis -acting single nucleotide polymorphism (SNP) controlling T6 transcription and activity. Sequence alignment of the T6 regulatory region from diverse V. cholerae strains revealed conservation of the SNP that we rewired to interconvert V. cholerae T6 activity between chitin-inducible and constitutive states. This study supports a model of pathogen evolution through a noncoding cis -regulatory mutation and preexisting, active transcription factors that confers a different fitness advantage to tightly regulated strains insidemore »a human host and unfettered strains adapted to environmental niches. IMPORTANCE Organisms sense external cues with regulatory circuits that trigger the production of transcription factors, which bind specific DNA sequences at promoters (“ cis ” regulatory elements) to activate target genes. Mutations of transcription factors or their regulatory elements create phenotypic diversity, allowing exploitation of new niches. Waterborne pathogen Vibrio cholerae encodes the type VI secretion system “nanoweapon” to kill competitor cells when activated. Despite identification of several transcription factors, no regulatory element has been identified in the promoter of the major type VI locus, to date. Combining phenotypic, genetic, and genomic analysis of diverse V. cholerae strains, we discovered a single nucleotide polymorphism in the type VI promoter that switches its killing activity between a constitutive state beneficial outside hosts and an inducible state for constraint in a host. Our results support a role for noncoding DNA in adaptation of this pathogen.« less
  4. Blanchard, Jeffrey (Ed.)
    ABSTRACT During mycoparasitism, a fungus—the host—is parasitized by another fungus—the mycoparasite. The genetic underpinnings of these relationships have been best characterized in ascomycete fungi. However, within basidiomycete fungi, there are rare instances of mushroom-forming species parasitizing the reproductive structures, or sporocarps, of other mushroom-forming species, which have been rarely investigated on a genetic level. One of the most enigmatic of these occurs between Entoloma abortivum and species of Armillaria , where hyphae of E. abortivum are hypothesized to disrupt the development of Armillaria sporocarps, resulting in the formation of carpophoroids. However, it remains unknown whether carpophoroids are the direct result of a mycoparasitic relationship. To address the nature of this unique interaction, we analyzed gene expression of field-collected Armillaria and E. abortivum sporocarps and carpophoroids. Transcripts in the carpophoroids are primarily from E. abortivum , supporting the hypothesis that this species is parasitizing Armillaria . Most notably, we identified differentially upregulated E. abortivum β-trefoil-type lectins in the carpophoroid, which we hypothesize bind to Armillaria cell wall galactomannoproteins, thereby mediating recognition between the mycoparasite and the host. The most differentially upregulated E. abortivum transcripts in the carpophoroid code for oxalate decarboxylases—enzymes that degrade oxalic acid. Oxalic acid is a virulence factormore »in many plant pathogens, including Armillaria species; however, E. abortivum has evolved a sophisticated strategy to overcome this defense mechanism. The number of gene models and genes that code for carbohydrate-active enzymes in the E. abortivum transcriptome was reduced compared to other closely related species, perhaps as a result of the specialized nature of this interaction. IMPORTANCE By studying fungi that parasitize other fungi, we can understand the basic biology of these unique interactions. Studies focused on the genetic mechanisms regulating mycoparasitism between host and parasite have thus far concentrated on a single fungal lineage within the Ascomycota. The work presented here expands our understanding of mycoparasitic relationships to the Basidiomycota and represents the first transcriptomic study to our knowledge that examines fungal-fungal relationships in their natural setting. The results presented here suggest that even distantly related mycoparasites utilize similar mechanisms to parasitize their host. Given that species of the mushroom-forming pathogen Armillaria cause plant root-rot diseases in many agroecosystems, an enhanced understanding of this interaction may contribute to better control of these diseases through biocontrol applications.« less
  5. Moreno, Silvia N. (Ed.)
    ABSTRACT During their parasitic life cycle, through sandflies and vertebrate hosts, Leishmania parasites confront strikingly different environments, including abrupt changes in pH and temperature, to which they must rapidly adapt. These adaptations include alterations in Leishmania gene expression, metabolism, and morphology, allowing them to thrive as promastigotes in the sandfly and as intracellular amastigotes in the vertebrate host. A critical aspect of Leishmania metabolic adaptation to these changes is maintenance of efficient mitochondrial function in the hostile vertebrate environment. Such functions, including generation of ATP, depend upon the expression of many mitochondrial proteins, including subunits of cytochrome c oxidase (COX). Significantly, under mammalian temperature conditions, expression of Leishmania major COX subunit IV (LmCOX4) and virulence are dependent upon two copies of LACK , a gene that encodes the ribosome-associated scaffold protein, LACK ( Leishmania ortholog of RACK1 [receptor for activated C kinase]). Targeted replacement of an endogenous LACK copy with a putative ribosome-binding motif-disrupted variant (LACK R34D35G36 →LACK D34D35E36 ) resulted in thermosensitive parasites that showed diminished LmCOX4 expression, mitochondrial fitness, and replication in macrophages. Surprisingly, despite these phenotypes, LACK D34D35E36 associated with monosomes and polysomes and showed no major impairment of global protein synthesis. Collectively, these data suggest thatmore »wild-type (WT) LACK orchestrates robust LmCOX4 expression and mitochondrial fitness to ensure parasite virulence, via optimized functional interactions with the ribosome. IMPORTANCE Leishmania parasites are trypanosomatid protozoans that persist in infected human hosts to cause a spectrum of pathologies, from cutaneous and mucocutaneous manifestations to visceral leishmaniasis caused by Leishmania donovani . The latter is usually fatal if not treated. Persistence of L. major in the mammalian host depends upon maintaining gene-regulatory programs to support essential parasite metabolic functions. These include expression and assembly of mitochondrial L. major cytochrome c oxidase (LmCOX) subunits, important for Leishmania ATP production. Significantly, under mammalian conditions, WT levels of LmCOX subunits require threshold levels of the Leishmania ribosome-associated scaffold protein, LACK. Unexpectedly, we find that although disruption of LACK’s putative ribosome-binding motif does not grossly perturb ribosome association or global protein synthesis, it nonetheless impairs COX subunit expression, mitochondrial function, and virulence. Our data indicate that the quality of LACK’s interaction with Leishmania ribosomes is critical for LmCOX subunit expression and parasite mitochondrial function in the mammalian host. Collectively, these findings validate LACK’s ribosomal interactions as a potential therapeutic target.« less