skip to main content


Title: The TOG protein Stu2/XMAP215 interacts covalently and noncovalently with SUMO
Abstract

Stu2p is the yeast member of the XMAP215/Dis1/ch‐TOG family of microtubule‐associated proteins that promote microtubule polymerization. However, the factors that regulate its activity are not clearly understood. Here we report that Stu2p in the budding yeastSaccharomyces cerevisiaeinteracts with SUMO by covalent and noncovalent mechanisms. Stu2p interacted by two‐hybrid analysis with the yeast SUMO Smt3p, its E2 Ubc9p, and the E3 Nfi1p. A region of Stu2p containing the dimerization domain was both necessary and sufficient for interaction with SUMO and Ubc9p. Stu2p was found to be sumoylated bothin vitroandin vivo. Stu2p copurified with SUMO in a pull‐down assay and vice versa. Stu2p also bound to a nonconjugatable form of SUMO, suggesting that Stu2p can interact noncovalently with SUMO. In addition, Stu2p interacted with the STUbL enzyme Ris1p. Stu2p also copurified with ubiquitin in a pull‐down assay, suggesting that it can be modified by both SUMO and ubiquitin. Tubulin, a major binding partner of Stu2p, also interacted noncovalently with SUMO. By two‐hybrid analysis, the beta‐tubulin Tub2p interacted with SUMO independently of the microtubule stressor, benomyl. Together, these findings raise the possibility that the microtubule polymerization activities mediated by Stu2p are regulated through sumoylation pathways.

 
more » « less
NSF-PAR ID:
10115280
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Cytoskeleton
Volume:
75
Issue:
7
ISSN:
1949-3584
Page Range / eLocation ID:
p. 290-306
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are transported through the cell. These include (i) entry of budded virus (BV) into the host cell and (ii) egress and budding of nucleocapsids newly produced from the plasma membrane. Prior studies have shown that the entry of nucleocapsids involves the polymerization of actin to propel nucleocapsids to nuclear pores and entry into the nucleus. For the spread of infection, progeny viruses must rapidly exit the infected cells, but the mechanism by which AcMNPV nucleocapsids traverse the cytoplasm is unknown. In this study, we examined whether nucleocapsids interact with lepidopteran kinesin-1 motor molecules and are potentially carried as cargo on microtubules to the plasma membrane in AcMNPV-infected cells. This study indicates that microtubule transport is utilized for the production of budded virus. 
    more » « less
  2. The neuronal cytoskeleton performs incredible feats during nervous system development. Extension of neuronal processes, migration, and synapse formation rely on the proper regulation of microtubules. Mutations that disrupt the primary α‐tubulin expressed during brain development,TUBA1A, are associated with a spectrum of human brain malformations. One model posits thatTUBA1Amutations lead to a reduction in tubulin subunits available for microtubule polymerization, which represents a haploinsufficiency mechanism. We propose an alternative model for the majority of tubulinopathy mutations, in which the mutant tubulin polymerizes into the microtubule lattice to dominantly “poison” microtubule function. Nine distinct α‐tubulin and ten β‐tubulin genes have been identified in the human genome. These genes encode similar tubulin proteins, called isotypes. Multiple tubulin isotypes may partially compensate for heterozygous deletion of a tubulin gene, but may not overcome the disruption caused by missense mutations that dominantly alter microtubule function. Here, we describe disorders attributed to haploinsufficiency versus dominant negative mechanisms to demonstrate the hallmark features of each disorder. We summarize literature on mouse models that represent both knockout and point mutants in tubulin genes, with an emphasis on how these mutations might provide insight into the nature of tubulinopathy patient mutations. Finally, we present data from a panel ofTUBA1Atubulinopathy mutations generated in yeast α‐tubulin that demonstrate that α‐tubulin mutants can incorporate into the microtubule network and support viability of yeast growth. This perspective on tubulinopathy mutations draws on previous studies and additional data to provide a fresh perspective on howTUBA1Amutations disrupt neurodevelopment.

     
    more » « less
  3. Abstract

    The reversible conjugation of small ubiquitin‐like modifier (SUMO) to other proteins has pervasive roles in various aspects of plant development and stress defense through its selective attachment to numerous intracellular substrates. An intriguing aspect of SUMO is that it can be further modified by SUMOylation and ubiquitylation, which isopeptide‐link either or both polypeptides to internal lysines within previously bound SUMOs. Although detectable by mass spectrometry, the functions of these secondary modifications remain obscure. Here, we generated transgenicArabidopsisthat replaced the two related and essential SUMO isoforms (SUMO1 and SUMO2) with a lysine‐null SUMO1 variant (K0) immune to further SUMOylation/ubiquitylation at these residues. Remarkably, homozygousSUMO1(K0) sumo1 sumo2plants developed normally, were not hypersensitive to heat stress, and have nearly unaltered SUMOylation profiles during heat shock. However, subtle changes in tolerance to salt, paraquat, and the DNA‐damaging agents bleomycin and methane methylsulfonate were evident, as were increased sensitivities to ABA and the gibberellic acid biosynthesis inhibitor paclobutrazol, suggesting roles for these secondary modifications in stress defense, DNA repair, and hormone signaling. We also generated viablesumo1 sumo2lines expressing a SUMO1(K0) variant specifically designed to help isolate SUMO conjugates and map SUMOylation sites, thus offering a new tool for investigating SUMOin planta.

     
    more » « less
  4. Summary

    DNA methylation plays crucial roles in cellular development and stress responses through gene regulation and genome stability control. Precise regulation of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), thede novoArabidopsis DNA methyltransferase, is crucial to maintain DNA methylation homeostasis to ensure genome integrity. Compared with the extensive studies on DRM2 targeting mechanisms, little information is known regarding the quality control of DRM2 itself.

    Here, we conducted yeast two‐hybrid screen assay and identified an E3 ligase, COP9 INTERACTING F‐BOX KELCH 1 (CFK1), as a novel DRM2‐interacting partner and targets DRM2 for degradation via the ubiquitin‐26S proteasome pathway inArabidopsis thaliana. We also performed whole genome bisulfite sequencing (BS‐seq) to determine the biological significance of CFK1‐mediated DRM2 degradation.

    Loss‐of‐functionCFK1leads to increased DRM2 protein abundance and overexpression of CFK1 showed reduced DRM2 protein levels. Consistently, CFK1 overexpression induces genome‐wide CHH hypomethylation and transcriptional de‐repression at specific DRM2 target loci.

    This study uncovered a distinct mechanism regulatingde novoDNA methyltransferase by CFK1 to control DNA methylation level.

     
    more » « less
  5. Summary

    SUMOylation as one of the protein post‐translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms.Botrytis cinereais a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low‐temperature adaptation are largely unknown in fungi.

    Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection inB. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO‐interacting motif (SIM).

    SUMOylated BcSsb regulates β‐tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono‐ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection.

    Our study uncovers the molecular mechanisms of SUMOylation‐mediated low‐temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low‐temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.

     
    more » « less