skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generalizations of Stillman’s Conjecture via Twisted Commutative Algebra
Abstract Combining recent results on Noetherianity of twisted commutative algebras by Draisma and the resolution of Stillman’s conjecture by Ananyan–Hochster, we prove a broad generalization of Stillman’s conjecture. Our theorem yields an array of boundedness results in commutative algebra that only depend on the degrees of the generators of an ideal and not the number of variables in the ambient polynomial ring.  more » « less
Award ID(s):
1849173 1902123
PAR ID:
10115640
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that the number of non-isotopic commutative semifields of odd order p n p^{n} is exponential in n n when n = 4 t n = 4t and t t is not a power of 2 2 . We introduce a new family of commutative semifields and a method for proving isotopy results on commutative semifields that we use to deduce the aforementioned bound. The previous best bound on the number of non-isotopic commutative semifields of odd order was quadratic in n n and given by Zhou and Pott [Adv. Math. 234 (2013), pp. 43–60]. Similar bounds in the case of even order were given in Kantor [J. Algebra 270 (2003), pp. 96–114] and Kantor and Williams [Trans. Amer. Math. Soc. 356 (2004), pp. 895–938]. 
    more » « less
  2. Tambara functors are an equivariant generalization of rings that appear as the homotopy groups of genuine equivariant commutative ring spectra. In recent work, Blumberg and Hill have studied the corresponding algebraic structures, called bi-incomplete Tambara functors, that arise from ring spectra indexed on incomplete G-universes. We answer a conjecture of Blumberg and Hill by proving a generalization of the Hoyer–Mazur theorem in the bi-incomplete setting. Bi-incomplete Tambara functors are characterized by indexing categories which parametrize incomplete systems of norms and transfers. In the course of our work, we develop several new tools for studying these indexing categories. In particular, we provide an easily checked, combinatorial characterization of when two indexing categories are compatible in the sense of Blumberg and Hill. 
    more » « less
  3. Abstract Inspired by methods in prime characteristic in commutative algebra, we introduce and study combinatorial invariants of seminormal monoids. We relate such numbers with the singularities and homological invariants of the semigroup ring associated to the monoid. Our results are characteristic independent. 
    more » « less
  4. Abstract We study the free probabilistic analog of optimal couplings for the quadratic cost, where classical probability spaces are replaced by tracial von Neumann algebras, and probability measures on $${\mathbb {R}}^m$$ R m are replaced by non-commutative laws of m -tuples. We prove an analog of the Monge–Kantorovich duality which characterizes optimal couplings of non-commutative laws with respect to Biane and Voiculescu’s non-commutative $$L^2$$ L 2 -Wasserstein distance using a new type of convex functions. As a consequence, we show that if ( X ,  Y ) is a pair of optimally coupled m -tuples of non-commutative random variables in a tracial $$\mathrm {W}^*$$ W ∗ -algebra $$\mathcal {A}$$ A , then $$\mathrm {W}^*((1 - t)X + tY) = \mathrm {W}^*(X,Y)$$ W ∗ ( ( 1 - t ) X + t Y ) = W ∗ ( X , Y ) for all $$t \in (0,1)$$ t ∈ ( 0 , 1 ) . Finally, we illustrate the subtleties of non-commutative optimal couplings through connections with results in quantum information theory and operator algebras. For instance, two non-commutative laws that can be realized in finite-dimensional algebras may still require an infinite-dimensional algebra to optimally couple. Moreover, the space of non-commutative laws of m -tuples is not separable with respect to the Wasserstein distance for $$m > 1$$ m > 1 . 
    more » « less
  5. This work concerns a map φ : R → S \varphi \colon R\to S of commutative noetherian rings, locally of finite flat dimension. It is proved that the André-Quillen homology functors are rigid, namely, if D n ( S / R ; − ) = 0 \mathrm {D}_n(S/R;-)=0 for some n ≥ 1 n\ge 1 , then D i ( S / R ; − ) = 0 \mathrm {D}_i(S/R;-)=0 for all i ≥ 2 i\ge 2 and φ {\varphi } is locally complete intersection. This extends Avramov’s theorem that draws the same conclusion assuming D n ( S / R ; − ) \mathrm {D}_n(S/R;-) vanishes for all n ≫ 0 n\gg 0 , confirming a conjecture of Quillen. The rigidity of André-Quillen functors is deduced from a more general result about the higher cotangent modules which answers a question raised by Avramov and Herzog, and subsumes a conjecture of Vasconcelos that was proved recently by the first author. The new insight leading to these results concerns the equivariance of a map from André-Quillen cohomology to Hochschild cohomology defined using the universal Atiyah class of φ \varphi . 
    more » « less